Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Probabilistic prediction of corrosion damage of steel structures in the vicinity of roads

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F25794787%3A_____%2F20%3AN0000001" target="_blank" >RIV/25794787:_____/20:N0000001 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27120/20:10246453

  • Výsledek na webu

    <a href="https://www.mdpi.com/2071-1050/12/23/9851" target="_blank" >https://www.mdpi.com/2071-1050/12/23/9851</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/su12239851" target="_blank" >10.3390/su12239851</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Probabilistic prediction of corrosion damage of steel structures in the vicinity of roads

  • Popis výsledku v původním jazyce

    The design, construction, and maintenance of steel structures must be carried out in a way that ensures they will be able to reliably operate for the whole duration of their planned service life. To ensure sufficient durability, it is necessary to determine and evaluate the characteristics of the appropriate environment in which the structure will be placed. This submission focuses on the specific environment surrounding roads that are treated with de-icing salts during winter maintenance. It investigates the dependency between corrosive damage to the structure and the relevant parameters of the environment. Basic corrosive factors include temperature, relative humidity, deposition of chlorides and sulfur dioxide, precipitation, the pH of precipitation as well as many other parameters. An accurate estimate of corrosive damage requires an analysis of the long-term trends in concentrations of individual corrosive factors, while respecting their randomly varying attributes. The article, hence, introduces and evaluates stochastic prediction models that are based on long-term programs focusing on the evaluation of the corrosive aggressiveness of the environment, while taking into account random variations of the nature of the input parameters. The use of stochastic prediction models allows us to perform sensitivity analysis that can determine the impact of specific corrosive factors on the corrosive damage caused to the structure. The article is supplemented by sensitivity analysis focusing on an evaluation from the effects of the deposition of chlorides on the corrosive damage to steel bridge structures. The analysis was carried out using data obtained from experimental measurements of the deposition rates of chlorides in the vicinity of roads in the Czech Republic.

  • Název v anglickém jazyce

    Probabilistic prediction of corrosion damage of steel structures in the vicinity of roads

  • Popis výsledku anglicky

    The design, construction, and maintenance of steel structures must be carried out in a way that ensures they will be able to reliably operate for the whole duration of their planned service life. To ensure sufficient durability, it is necessary to determine and evaluate the characteristics of the appropriate environment in which the structure will be placed. This submission focuses on the specific environment surrounding roads that are treated with de-icing salts during winter maintenance. It investigates the dependency between corrosive damage to the structure and the relevant parameters of the environment. Basic corrosive factors include temperature, relative humidity, deposition of chlorides and sulfur dioxide, precipitation, the pH of precipitation as well as many other parameters. An accurate estimate of corrosive damage requires an analysis of the long-term trends in concentrations of individual corrosive factors, while respecting their randomly varying attributes. The article, hence, introduces and evaluates stochastic prediction models that are based on long-term programs focusing on the evaluation of the corrosive aggressiveness of the environment, while taking into account random variations of the nature of the input parameters. The use of stochastic prediction models allows us to perform sensitivity analysis that can determine the impact of specific corrosive factors on the corrosive damage caused to the structure. The article is supplemented by sensitivity analysis focusing on an evaluation from the effects of the deposition of chlorides on the corrosive damage to steel bridge structures. The analysis was carried out using data obtained from experimental measurements of the deposition rates of chlorides in the vicinity of roads in the Czech Republic.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-07949S" target="_blank" >GA18-07949S: Pravděpodobnostní modelování trvanlivosti železobetonových konstrukcí s uvážením spolupůsobení karbonatace, chloridů a mechanického zatížení</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Sustainability

  • ISSN

    2071-1050

  • e-ISSN

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    23

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    17

  • Strana od-do

    1-17

  • Kód UT WoS článku

    000597992800001

  • EID výsledku v databázi Scopus

    2-s2.0-85096551903