Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

K-means clustering of honeynet data with unsupervised representation learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F25840886%3A_____%2F21%3AN0000036" target="_blank" >RIV/25840886:_____/21:N0000036 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://ceur-ws.org/Vol-2853/paper48.pdf" target="_blank" >http://ceur-ws.org/Vol-2853/paper48.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    K-means clustering of honeynet data with unsupervised representation learning

  • Popis výsledku v původním jazyce

    Networks connected to the Internet are vulnerable to malicious activity that threaten the stability of work. The types and characteristics of malicious actions are constantly changing, which significantly complicates the fight against them. Attacks on computer networks are subject to constant updates and modifications. Modern intrusion detection systems should ensure the detection of both existing types of attacks and new types of attacks about which there might be no information available at the time of attack. Honeypots and honeynets play an important role in monitoring malicious activities and detecting new types of attacks. The use of honeypots and honeynets has significant advantages: they can protect working services, provide network vulnerability detection, reduce the false positive rate, slow down the influence of malicious actions on the working network, and collect data on malicious activity. The analysis of the data collected by a honeynet helps detect attack patterns that can be used in intrusion detection systems. This paper uses clustering to determine attack patterns based on the time series of attacker activity. Using time series instead of static data facilitates the detection of attacks at their onset. This paper proposes the joint application of k-means clustering and a recurrent autoencoder for time series preprocessing. The weights of the recurrent autoencoder are optimized on the basis of the total loss function, which contains two components: a recovery loss component and a clustering loss component. The recurrent encoder, consisting of convolutional and recurrent blocks, provides an effective time series representation, suitable for finding similar patterns using k-means clustering. Experimental research shows that the proposed approach clusters malicious actions monitored by a honeynet and identifies patterns of attacks.

  • Název v anglickém jazyce

    K-means clustering of honeynet data with unsupervised representation learning

  • Popis výsledku anglicky

    Networks connected to the Internet are vulnerable to malicious activity that threaten the stability of work. The types and characteristics of malicious actions are constantly changing, which significantly complicates the fight against them. Attacks on computer networks are subject to constant updates and modifications. Modern intrusion detection systems should ensure the detection of both existing types of attacks and new types of attacks about which there might be no information available at the time of attack. Honeypots and honeynets play an important role in monitoring malicious activities and detecting new types of attacks. The use of honeypots and honeynets has significant advantages: they can protect working services, provide network vulnerability detection, reduce the false positive rate, slow down the influence of malicious actions on the working network, and collect data on malicious activity. The analysis of the data collected by a honeynet helps detect attack patterns that can be used in intrusion detection systems. This paper uses clustering to determine attack patterns based on the time series of attacker activity. Using time series instead of static data facilitates the detection of attacks at their onset. This paper proposes the joint application of k-means clustering and a recurrent autoencoder for time series preprocessing. The weights of the recurrent autoencoder are optimized on the basis of the total loss function, which contains two components: a recovery loss component and a clustering loss component. The recurrent encoder, consisting of convolutional and recurrent blocks, provides an effective time series representation, suitable for finding similar patterns using k-means clustering. Experimental research shows that the proposed approach clusters malicious actions monitored by a honeynet and identifies patterns of attacks.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    CEUR Workshop Proceedings

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

  • Počet stran výsledku

    11

  • Strana od-do

    439 - 449

  • Název nakladatele

    CEUR-WS

  • Místo vydání

    CEUR-WS

  • Místo konání akce

    Khmelnytskyi

  • Datum konání akce

    24. 3. 2021

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku