Neural network classifier of attacks in IP telephony
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86090921" target="_blank" >RIV/61989100:27240/14:86090921 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1117/12.2050671" target="_blank" >http://dx.doi.org/10.1117/12.2050671</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1117/12.2050671" target="_blank" >10.1117/12.2050671</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Neural network classifier of attacks in IP telephony
Popis výsledku v původním jazyce
Various types of monitoring mechanism allow us to detect and monitor behavior of attackers in VoIP networks. Analysis of detected malicious traffic is crucial for further investigation and hardening the network. This analysis is typically based on statistical methods and the article brings a solution based on neural network. The proposed algorithm is used as a classifier of attacks in a distributed monitoring network of independent honeypot probes. Information about attacks on these honeypots is collected on a centralized server and then classified. This classification is based on different mechanisms. One of them is based on the multilayer perceptron neural network. The article describes inner structure of used neural network and also information about implementation of this network. The learning set for this neural network is based on real attack data collected from IP telephony honeypot called Dionaea. We prepare the learning set from real attack data after collecting, cleaning and
Název v anglickém jazyce
Neural network classifier of attacks in IP telephony
Popis výsledku anglicky
Various types of monitoring mechanism allow us to detect and monitor behavior of attackers in VoIP networks. Analysis of detected malicious traffic is crucial for further investigation and hardening the network. This analysis is typically based on statistical methods and the article brings a solution based on neural network. The proposed algorithm is used as a classifier of attacks in a distributed monitoring network of independent honeypot probes. Information about attacks on these honeypots is collected on a centralized server and then classified. This classification is based on different mechanisms. One of them is based on the multilayer perceptron neural network. The article describes inner structure of used neural network and also information about implementation of this network. The learning set for this neural network is based on real attack data collected from IP telephony honeypot called Dionaea. We prepare the learning set from real attack data after collecting, cleaning and
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of SPIE - The International Society for Optical Engineering. Volume 9118
ISBN
978-1-62841-055-6
ISSN
0277-786X
e-ISSN
—
Počet stran výsledku
7
Strana od-do
"A1"-"A7"
Název nakladatele
SPIE
Místo vydání
Bellingham
Místo konání akce
Baltimore
Datum konání akce
7. 5. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—