Comparison of artificial intelligence classifiers for SIP attack data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F16%3A10130740" target="_blank" >RIV/63839172:_____/16:10130740 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1117/12.2225292" target="_blank" >http://dx.doi.org/10.1117/12.2225292</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1117/12.2225292" target="_blank" >10.1117/12.2225292</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of artificial intelligence classifiers for SIP attack data
Popis výsledku v původním jazyce
Honeypot application is a source of valuable data about attacks on the network. We run several SIP honeypots in various computer networks, which are separated geographically and logically. Each honeypot runs on public IP address and uses standard SIP PBX ports. All information gathered via honeypot is periodically sent to the centralized server. This server classifies all attack data by neural network algorithm. The paper describes optimizations of a neural network classifier, which lower the classification error. The article contains the comparison of two neural network algorithm used for the classification of validation data. The first is the original implementation of the neural network described in recent work; the second neural network uses further optimizations like input normalization or cross-entropy cost function. We also use other implementations of neural networks and machine learning classification algorithms. The comparison test their capabilities on validation data to find the optimal classifier. The article result shows promise for further development of an accurate SIP attack classification engine.
Název v anglickém jazyce
Comparison of artificial intelligence classifiers for SIP attack data
Popis výsledku anglicky
Honeypot application is a source of valuable data about attacks on the network. We run several SIP honeypots in various computer networks, which are separated geographically and logically. Each honeypot runs on public IP address and uses standard SIP PBX ports. All information gathered via honeypot is periodically sent to the centralized server. This server classifies all attack data by neural network algorithm. The paper describes optimizations of a neural network classifier, which lower the classification error. The article contains the comparison of two neural network algorithm used for the classification of validation data. The first is the original implementation of the neural network described in recent work; the second neural network uses further optimizations like input normalization or cross-entropy cost function. We also use other implementations of neural networks and machine learning classification algorithms. The comparison test their capabilities on validation data to find the optimal classifier. The article result shows promise for further development of an accurate SIP attack classification engine.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2010005" target="_blank" >LM2010005: Velká infrastruktura CESNET</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Machine Intelligence and Bio-inspired Computation: Theory and Applications X
ISBN
978-1-5106-0091-1
ISSN
1996-756X
e-ISSN
—
Počet stran výsledku
6
Strana od-do
—
Název nakladatele
SPIE
Místo vydání
Bellingham, Washington, US
Místo konání akce
Baltimore, Maryland, US
Datum konání akce
17. 4. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000389681700003