A Neural Network Based System for Classification of Attacks in IP Telephony
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F14%3A10130425" target="_blank" >RIV/63839172:_____/14:10130425 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Neural Network Based System for Classification of Attacks in IP Telephony
Popis výsledku v původním jazyce
This article deals with an application of artificial intelligence on classification of attacks in IP telephony. Current used solution of classification is typically based on statistical methods such as Hellinger-Distance, Holt-Winters or Brutlag algorithm and the proposed solution MLP NN in the paper is used as a classifier of attacks in a distributed monitoring network of independent honeypot probes. The vulnerability of SIP elements to DoS attacks was examined in real infrastructure and evaluated their impact on a SIP server. We prepared a set of honeypots monitoring various aspects of nowadays VoIP infrastructure which bring valuable data about hacker's activity with no threat to the running system. Data about attacks on these honeypots are collected on a centralized server and then classified in the neural network. The paper describes inner structure of used neural network and also information about implementation of this network. The trained neural network is capable to classify t
Název v anglickém jazyce
A Neural Network Based System for Classification of Attacks in IP Telephony
Popis výsledku anglicky
This article deals with an application of artificial intelligence on classification of attacks in IP telephony. Current used solution of classification is typically based on statistical methods such as Hellinger-Distance, Holt-Winters or Brutlag algorithm and the proposed solution MLP NN in the paper is used as a classifier of attacks in a distributed monitoring network of independent honeypot probes. The vulnerability of SIP elements to DoS attacks was examined in real infrastructure and evaluated their impact on a SIP server. We prepared a set of honeypots monitoring various aspects of nowadays VoIP infrastructure which bring valuable data about hacker's activity with no threat to the running system. Data about attacks on these honeypots are collected on a centralized server and then classified in the neural network. The paper describes inner structure of used neural network and also information about implementation of this network. The trained neural network is capable to classify t
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2010005" target="_blank" >LM2010005: Velká infrastruktura CESNET</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
ISSN
1998-4464
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
neuveden
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
368-375
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—