Comprehensive approach to the detection and analysis of polymorphic malware
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F25840886%3A_____%2F24%3AN0000009" target="_blank" >RIV/25840886:_____/24:N0000009 - isvavai.cz</a>
Výsledek na webu
<a href="https://ceur-ws.org/Vol-3736/paper23.pdf" target="_blank" >https://ceur-ws.org/Vol-3736/paper23.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comprehensive approach to the detection and analysis of polymorphic malware
Popis výsledku v původním jazyce
The article examines the features of modern polymorphic malware and its impact on the functioning of computer systems. Existing approaches and methods of its detection and analysis are considered, such as: string search algorithm, intelligent data analysis, sandbox analysis, machine learning, structural feature engineering. Their advantages and disadvantages are determined. The necessity of using a new approach, namely the detection of malicious software using probabilistic logical networks, is argued. Its advantages and development prospects are determined. In the study, a comprehensive approach consisting of 3 stages is proposed for the detection of polymorphic malware. The first one uses string search algorithms. The second is a complex of methods, including intelligent data analysis, sandbox analysis, machine learning, and structural feature engineering. In the third step, the use of probabilistic logical networks is proposed, which will allow establishing the probability that the software belongs to polymorphic malware. The use of the proposed integrated approach will also allow to determine the necessary methods for neutralization of detected malicious software. This approach will maximize the probability of detecting polymorphic malware.
Název v anglickém jazyce
Comprehensive approach to the detection and analysis of polymorphic malware
Popis výsledku anglicky
The article examines the features of modern polymorphic malware and its impact on the functioning of computer systems. Existing approaches and methods of its detection and analysis are considered, such as: string search algorithm, intelligent data analysis, sandbox analysis, machine learning, structural feature engineering. Their advantages and disadvantages are determined. The necessity of using a new approach, namely the detection of malicious software using probabilistic logical networks, is argued. Its advantages and development prospects are determined. In the study, a comprehensive approach consisting of 3 stages is proposed for the detection of polymorphic malware. The first one uses string search algorithms. The second is a complex of methods, including intelligent data analysis, sandbox analysis, machine learning, and structural feature engineering. In the third step, the use of probabilistic logical networks is proposed, which will allow establishing the probability that the software belongs to polymorphic malware. The use of the proposed integrated approach will also allow to determine the necessary methods for neutralization of detected malicious software. This approach will maximize the probability of detecting polymorphic malware.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 1st International Workshop on Intelligent and CyberPhysical Systems
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
12
Strana od-do
312-323
Název nakladatele
CEUR
Místo vydání
Khmelnytskyi, Ukraine
Místo konání akce
Khmelnytskyi, Ukraine
Datum konání akce
28. 6. 2024
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—