Modelling the Network behaviour of Malware to Block Malicious Patterns. The Stratosphere Project: a Behavioural IPS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00237274" target="_blank" >RIV/68407700:21230/15:00237274 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.virusbtn.com/conference/vb2015/abstracts/Garcia.xml" target="_blank" >https://www.virusbtn.com/conference/vb2015/abstracts/Garcia.xml</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modelling the Network behaviour of Malware to Block Malicious Patterns. The Stratosphere Project: a Behavioural IPS
Popis výsledku v původním jazyce
Current malware traffic detection solutions work mostly by using static fingerprints, whitelists and blacklists, and crowd-sourced threat intelligence analytics. These methods are useful for detecting known malware in real time, but are insufficient to detect unknown malicious trends and attacks. Our proposed complementary solution is to analyse the inherent patterns of malware actions in the network by means of machine learning algorithms. In particular, we use Markov Chains-based algorithms to find network patterns that are independent of static features, such as IP addresses or payloads. These patterns are used to build behavioural models of malware actions that are later used to detect similar traffic in the network. All these models and detectionalgorithms were used to create a free software intrusion prevention system, called Stratosphere IPS, which is thoroughly tested with normal and malicious traffic. The IPS is able to detect new network patterns that are similar to the know
Název v anglickém jazyce
Modelling the Network behaviour of Malware to Block Malicious Patterns. The Stratosphere Project: a Behavioural IPS
Popis výsledku anglicky
Current malware traffic detection solutions work mostly by using static fingerprints, whitelists and blacklists, and crowd-sourced threat intelligence analytics. These methods are useful for detecting known malware in real time, but are insufficient to detect unknown malicious trends and attacks. Our proposed complementary solution is to analyse the inherent patterns of malware actions in the network by means of machine learning algorithms. In particular, we use Markov Chains-based algorithms to find network patterns that are independent of static features, such as IP addresses or payloads. These patterns are used to build behavioural models of malware actions that are later used to detect similar traffic in the network. All these models and detectionalgorithms were used to create a free software intrusion prevention system, called Stratosphere IPS, which is thoroughly tested with normal and malicious traffic. The IPS is able to detect new network patterns that are similar to the know
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů