Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Detecting the Behavioral Relationships of Malware Connections

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00313754" target="_blank" >RIV/68407700:21230/16:00313754 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1145/2970030.2970038" target="_blank" >http://dx.doi.org/10.1145/2970030.2970038</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/2970030.2970038" target="_blank" >10.1145/2970030.2970038</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Detecting the Behavioral Relationships of Malware Connections

  • Popis výsledku v původním jazyce

    A normal computer infected with malware is difficult to detect. There have been several approaches in the last years which analyze the behavior of malware and obtain good results. The malware traffic may be detected, but it is very common to miss-detect normal traffic as malicious and generate false positives. This is specially the case when the methods are tested in real and large networks. The detection errors are generated due to the malware changing and rapidly adapting its domains and patterns to mimic normal connections. To better detect malware infections and separate them from normal traffic we propose to detect the behavior of the group of connections generated by the malware. It is known that malware usually generates various related connections simultaneously and therefore it shows a group pattern. Based on previous experiments, this paper suggests that the behavior of a group of connections can be modelled as a directed cyclic graph with special properties, such as its internal patterns, relationships, frequencies and sequences of connections. By training the group models on known traffic it may be possible to better distinguish between a malware connection and a normal connection. 2016 Copyright held by the owner/author(s).

  • Název v anglickém jazyce

    Detecting the Behavioral Relationships of Malware Connections

  • Popis výsledku anglicky

    A normal computer infected with malware is difficult to detect. There have been several approaches in the last years which analyze the behavior of malware and obtain good results. The malware traffic may be detected, but it is very common to miss-detect normal traffic as malicious and generate false positives. This is specially the case when the methods are tested in real and large networks. The detection errors are generated due to the malware changing and rapidly adapting its domains and patterns to mimic normal connections. To better detect malware infections and separate them from normal traffic we propose to detect the behavior of the group of connections generated by the malware. It is known that malware usually generates various related connections simultaneously and therefore it shows a group pattern. Based on previous experiments, this paper suggests that the behavior of a group of connections can be modelled as a directed cyclic graph with special properties, such as its internal patterns, relationships, frequencies and sequences of connections. By training the group models on known traffic it may be possible to better distinguish between a malware connection and a normal connection. 2016 Copyright held by the owner/author(s).

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 1st International Workshop on AI for Privacy and Security

  • ISBN

    978-1-4503-4304-6

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

  • Název nakladatele

    ACM

  • Místo vydání

    New York

  • Místo konání akce

    Hague

  • Datum konání akce

    29. 8. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku