Detecting the Behavioral Relationships of Malware Connections
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00313754" target="_blank" >RIV/68407700:21230/16:00313754 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1145/2970030.2970038" target="_blank" >http://dx.doi.org/10.1145/2970030.2970038</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/2970030.2970038" target="_blank" >10.1145/2970030.2970038</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detecting the Behavioral Relationships of Malware Connections
Popis výsledku v původním jazyce
A normal computer infected with malware is difficult to detect. There have been several approaches in the last years which analyze the behavior of malware and obtain good results. The malware traffic may be detected, but it is very common to miss-detect normal traffic as malicious and generate false positives. This is specially the case when the methods are tested in real and large networks. The detection errors are generated due to the malware changing and rapidly adapting its domains and patterns to mimic normal connections. To better detect malware infections and separate them from normal traffic we propose to detect the behavior of the group of connections generated by the malware. It is known that malware usually generates various related connections simultaneously and therefore it shows a group pattern. Based on previous experiments, this paper suggests that the behavior of a group of connections can be modelled as a directed cyclic graph with special properties, such as its internal patterns, relationships, frequencies and sequences of connections. By training the group models on known traffic it may be possible to better distinguish between a malware connection and a normal connection. 2016 Copyright held by the owner/author(s).
Název v anglickém jazyce
Detecting the Behavioral Relationships of Malware Connections
Popis výsledku anglicky
A normal computer infected with malware is difficult to detect. There have been several approaches in the last years which analyze the behavior of malware and obtain good results. The malware traffic may be detected, but it is very common to miss-detect normal traffic as malicious and generate false positives. This is specially the case when the methods are tested in real and large networks. The detection errors are generated due to the malware changing and rapidly adapting its domains and patterns to mimic normal connections. To better detect malware infections and separate them from normal traffic we propose to detect the behavior of the group of connections generated by the malware. It is known that malware usually generates various related connections simultaneously and therefore it shows a group pattern. Based on previous experiments, this paper suggests that the behavior of a group of connections can be modelled as a directed cyclic graph with special properties, such as its internal patterns, relationships, frequencies and sequences of connections. By training the group models on known traffic it may be possible to better distinguish between a malware connection and a normal connection. 2016 Copyright held by the owner/author(s).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 1st International Workshop on AI for Privacy and Security
ISBN
978-1-4503-4304-6
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
—
Název nakladatele
ACM
Místo vydání
New York
Místo konání akce
Hague
Datum konání akce
29. 8. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—