Detecting DGA Malware traffic through Behavioral Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00306875" target="_blank" >RIV/68407700:21230/16:00306875 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/document/7585238/" target="_blank" >http://ieeexplore.ieee.org/document/7585238/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ARGENCON.2016.7585238" target="_blank" >10.1109/ARGENCON.2016.7585238</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detecting DGA Malware traffic through Behavioral Models
Popis výsledku v původním jazyce
Abstract: Some botnets use special algorithms to generate the domain names they need to connect to their command and control servers. They are refereed as Domain Generation Algorithms. Domain Generation Algorithms generate domain names and tries to resolve their IP addresses. If the domain has an IP address, it is used to connect to that command and control server. Otherwise, the DGA generates a new domain and keeps trying to connect. In both cases it is possible to capture and analyze the special behavior shown by those DNS packets in the network. The behavior of Domain Generation Algorithms is difficult to automatically detect because each domain is usually randomly generated and therefore unpredictable. Hence, it is challenging to separate the DNS traffic generated by malware from the DNS traffic generated by normal computers. In this work we analyze the use of behavioral detection approaches based on Markov Models to differentiate Domain Generation Algorithms traffic from normal DNS traffic. The evaluation methodology of our detection models has focused on a real-time approach based on the use of time windows for reporting the alerts. All the detection models have shown a clear differentiation between normal and malicious DNS traffic and most have also shown a good detection rate. We believe this work is a further step in using behavioral models for network detection and we hope to facilitate the development of more general and better behavioral detection methods of malware traffic.
Název v anglickém jazyce
Detecting DGA Malware traffic through Behavioral Models
Popis výsledku anglicky
Abstract: Some botnets use special algorithms to generate the domain names they need to connect to their command and control servers. They are refereed as Domain Generation Algorithms. Domain Generation Algorithms generate domain names and tries to resolve their IP addresses. If the domain has an IP address, it is used to connect to that command and control server. Otherwise, the DGA generates a new domain and keeps trying to connect. In both cases it is possible to capture and analyze the special behavior shown by those DNS packets in the network. The behavior of Domain Generation Algorithms is difficult to automatically detect because each domain is usually randomly generated and therefore unpredictable. Hence, it is challenging to separate the DNS traffic generated by malware from the DNS traffic generated by normal computers. In this work we analyze the use of behavioral detection approaches based on Markov Models to differentiate Domain Generation Algorithms traffic from normal DNS traffic. The evaluation methodology of our detection models has focused on a real-time approach based on the use of time windows for reporting the alerts. All the detection models have shown a clear differentiation between normal and malicious DNS traffic and most have also shown a good detection rate. We believe this work is a further step in using behavioral models for network detection and we hope to facilitate the development of more general and better behavioral detection methods of malware traffic.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2016 IEEE Biennial Congress of Argentina
ISBN
978-1-4673-9764-3
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
—
Název nakladatele
American Institute of Physics and Magnetic Society of the IEEE
Místo vydání
San Francisco
Místo konání akce
Buenos Aires
Datum konání akce
15. 6. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000386665200002