Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Detecting DGA Malware traffic through Behavioral Models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00306875" target="_blank" >RIV/68407700:21230/16:00306875 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://ieeexplore.ieee.org/document/7585238/" target="_blank" >http://ieeexplore.ieee.org/document/7585238/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ARGENCON.2016.7585238" target="_blank" >10.1109/ARGENCON.2016.7585238</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Detecting DGA Malware traffic through Behavioral Models

  • Popis výsledku v původním jazyce

    Abstract: Some botnets use special algorithms to generate the domain names they need to connect to their command and control servers. They are refereed as Domain Generation Algorithms. Domain Generation Algorithms generate domain names and tries to resolve their IP addresses. If the domain has an IP address, it is used to connect to that command and control server. Otherwise, the DGA generates a new domain and keeps trying to connect. In both cases it is possible to capture and analyze the special behavior shown by those DNS packets in the network. The behavior of Domain Generation Algorithms is difficult to automatically detect because each domain is usually randomly generated and therefore unpredictable. Hence, it is challenging to separate the DNS traffic generated by malware from the DNS traffic generated by normal computers. In this work we analyze the use of behavioral detection approaches based on Markov Models to differentiate Domain Generation Algorithms traffic from normal DNS traffic. The evaluation methodology of our detection models has focused on a real-time approach based on the use of time windows for reporting the alerts. All the detection models have shown a clear differentiation between normal and malicious DNS traffic and most have also shown a good detection rate. We believe this work is a further step in using behavioral models for network detection and we hope to facilitate the development of more general and better behavioral detection methods of malware traffic.

  • Název v anglickém jazyce

    Detecting DGA Malware traffic through Behavioral Models

  • Popis výsledku anglicky

    Abstract: Some botnets use special algorithms to generate the domain names they need to connect to their command and control servers. They are refereed as Domain Generation Algorithms. Domain Generation Algorithms generate domain names and tries to resolve their IP addresses. If the domain has an IP address, it is used to connect to that command and control server. Otherwise, the DGA generates a new domain and keeps trying to connect. In both cases it is possible to capture and analyze the special behavior shown by those DNS packets in the network. The behavior of Domain Generation Algorithms is difficult to automatically detect because each domain is usually randomly generated and therefore unpredictable. Hence, it is challenging to separate the DNS traffic generated by malware from the DNS traffic generated by normal computers. In this work we analyze the use of behavioral detection approaches based on Markov Models to differentiate Domain Generation Algorithms traffic from normal DNS traffic. The evaluation methodology of our detection models has focused on a real-time approach based on the use of time windows for reporting the alerts. All the detection models have shown a clear differentiation between normal and malicious DNS traffic and most have also shown a good detection rate. We believe this work is a further step in using behavioral models for network detection and we hope to facilitate the development of more general and better behavioral detection methods of malware traffic.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2016 IEEE Biennial Congress of Argentina

  • ISBN

    978-1-4673-9764-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

  • Název nakladatele

    American Institute of Physics and Magnetic Society of the IEEE

  • Místo vydání

    San Francisco

  • Místo konání akce

    Buenos Aires

  • Datum konání akce

    15. 6. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000386665200002