Bringing a GAN to a Knife-Fight: Adapting Malware Communication to Avoid Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00322702" target="_blank" >RIV/68407700:21230/18:00322702 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8424635/?part=1" target="_blank" >https://ieeexplore.ieee.org/document/8424635/?part=1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SPW.2018.00019" target="_blank" >10.1109/SPW.2018.00019</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bringing a GAN to a Knife-Fight: Adapting Malware Communication to Avoid Detection
Popis výsledku v původním jazyce
Generative Adversarial Networks (GANs) have been successfully used in a large number of domains. This paper proposes the use of GANs for generating network traffic in order to mimic other types of traffic. In particular, our method modifies the network behavior of a real malware in order to mimic the traffic of a legitimate application, and therefore avoid detection. By modifying the source code of a malware to receive parameters from a GAN, it was possible to adapt the behavior of its Command and Control (C2) channel to mimic the behavior of Facebook chat network traffic. In this way, it was possible to avoid the detection of new-generation Intrusion Prevention Systems that use machine learning and behavioral characteristics. A real-life scenario was successfully implemented using the Stratosphere behavioral IPS in a router, while the malware and the GAN were deployed in the local network of our laboratory, and the C2 server was deployed in the cloud. Results show that a GAN can successfully modify the traffic of a malware to make it undetectable. The modified malware also tested if it was being blocked and used this information as a feedback to the GAN. This work envisions the possibility of self-adapting malware and self-adapting IPS.
Název v anglickém jazyce
Bringing a GAN to a Knife-Fight: Adapting Malware Communication to Avoid Detection
Popis výsledku anglicky
Generative Adversarial Networks (GANs) have been successfully used in a large number of domains. This paper proposes the use of GANs for generating network traffic in order to mimic other types of traffic. In particular, our method modifies the network behavior of a real malware in order to mimic the traffic of a legitimate application, and therefore avoid detection. By modifying the source code of a malware to receive parameters from a GAN, it was possible to adapt the behavior of its Command and Control (C2) channel to mimic the behavior of Facebook chat network traffic. In this way, it was possible to avoid the detection of new-generation Intrusion Prevention Systems that use machine learning and behavioral characteristics. A real-life scenario was successfully implemented using the Stratosphere behavioral IPS in a router, while the malware and the GAN were deployed in the local network of our laboratory, and the C2 server was deployed in the cloud. Results show that a GAN can successfully modify the traffic of a malware to make it undetectable. The modified malware also tested if it was being blocked and used this information as a feedback to the GAN. This work envisions the possibility of self-adapting malware and self-adapting IPS.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/TH02010990" target="_blank" >TH02010990: Ludus: Kolaborativní obrana proti internetovým útokům pomocí stojového učení a teorie her</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 2018 IEEE Symposium on Security and Privacy Workshops
ISBN
978-1-5386-8276-0
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
70-75
Název nakladatele
IEEE Computer Society
Místo vydání
USA
Místo konání akce
San Francisco
Datum konání akce
24. 5. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—