EVALUATION OF MATERIAL PROPERTIES OF STRUCTURAL STEELS USING ARTIFICIAL INTELIGENCE NEURAL NETWORK METHOD
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F25870807%3A_____%2F19%3AN0000017" target="_blank" >RIV/25870807:_____/19:N0000017 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
EVALUATION OF MATERIAL PROPERTIES OF STRUCTURAL STEELS USING ARTIFICIAL INTELIGENCE NEURAL NETWORK METHOD
Popis výsledku v původním jazyce
This work summarizes results and progress in new method development for identification of material properties of steel. This work deals with application of the small punch test for evaluation of material degradation of power station in the Czech Republic within the project TE01020068 “Centre of research and experimental development of reliable energy production, work package 8: Research and development of new testing methods for evaluation of material properties”. The main effort is here an improvement of empirical correlation of selected steel materials used in power industry for the manufacturing of critical components (rotors, steampipes, etc.). The effort here is on the utilization of the finite element method (FEM) and the neural network (NN) for evaluation of mechanical properties (Young modulus of elasticity, yield stress, tensile strength) of the selected material, based on SPT results only. Paper contains results of experimental work carried out over past 7 years. After modification of actual neural network and increasing of the number of results interesting results of mechanical properties prediction have been obtained. Increasing data of points in common up to 300, leads to significantly lower deviation that varies about 3-5 %.
Název v anglickém jazyce
EVALUATION OF MATERIAL PROPERTIES OF STRUCTURAL STEELS USING ARTIFICIAL INTELIGENCE NEURAL NETWORK METHOD
Popis výsledku anglicky
This work summarizes results and progress in new method development for identification of material properties of steel. This work deals with application of the small punch test for evaluation of material degradation of power station in the Czech Republic within the project TE01020068 “Centre of research and experimental development of reliable energy production, work package 8: Research and development of new testing methods for evaluation of material properties”. The main effort is here an improvement of empirical correlation of selected steel materials used in power industry for the manufacturing of critical components (rotors, steampipes, etc.). The effort here is on the utilization of the finite element method (FEM) and the neural network (NN) for evaluation of mechanical properties (Young modulus of elasticity, yield stress, tensile strength) of the selected material, based on SPT results only. Paper contains results of experimental work carried out over past 7 years. After modification of actual neural network and increasing of the number of results interesting results of mechanical properties prediction have been obtained. Increasing data of points in common up to 300, leads to significantly lower deviation that varies about 3-5 %.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/TE01020068" target="_blank" >TE01020068: Centrum výzkumu a experimentálního vývoje spolehlivé energetiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Metal 2019 28th International Conference on Metallurgy and Materials Conference Proceedings
ISBN
978-80-87294-92-5
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
703 - 708
Název nakladatele
Tanger Ltd.
Místo vydání
Ostrava
Místo konání akce
Brno
Datum konání akce
22. 5. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
999