Damage Evolution Simulations via a Coupled Crystal Plasticity and Cohesive Zone Model for Additively Manufactured Austenitic SS 316L DED Components
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26316919%3A_____%2F22%3AN0000020" target="_blank" >RIV/26316919:_____/22:N0000020 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2075-4701/12/7/1096/htm" target="_blank" >https://www.mdpi.com/2075-4701/12/7/1096/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/met12071096" target="_blank" >10.3390/met12071096</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Damage Evolution Simulations via a Coupled Crystal Plasticity and Cohesive Zone Model for Additively Manufactured Austenitic SS 316L DED Components
Popis výsledku v původním jazyce
This study presents a microstructural model applicable to additively manufactured (AM) austenitic SS 316L components fabricated via a direct energy deposition (DED) process. The model is primarily intended to give an understanding of the effect of microscale and mesoscale features, such as grains and melt pool sizes, on the mechanical properties of manufactured components. Based on experimental observations, initial assumptions for the numerical model regarding grain size and melt pool dimensions were considered. Experimental observations based on miniature-sized 316L stainless steel DED-fabricated samples were carried out to shed light on the deformation mechanism of FCC materials at the grain scale. Furthermore, the dependency of latent strain hardening parameters based on the Bassani-Wu hardening model for a single crystal scale is investigated, where the Voronoi tessellation method and probability theory are utilized for the definition of the grain distribution. A hierarchical polycrystalline modeling methodology based on a representative volume element (RVE) with the realistic impact of grain boundaries was adopted for fracture assessment of the AM parts. To qualify the validity of process-structure-property relationships, cohesive zone damage surfaces were used between melt pool boundaries as the predefined initial cracks and the performance of the model is validated based on the experimental observations.
Název v anglickém jazyce
Damage Evolution Simulations via a Coupled Crystal Plasticity and Cohesive Zone Model for Additively Manufactured Austenitic SS 316L DED Components
Popis výsledku anglicky
This study presents a microstructural model applicable to additively manufactured (AM) austenitic SS 316L components fabricated via a direct energy deposition (DED) process. The model is primarily intended to give an understanding of the effect of microscale and mesoscale features, such as grains and melt pool sizes, on the mechanical properties of manufactured components. Based on experimental observations, initial assumptions for the numerical model regarding grain size and melt pool dimensions were considered. Experimental observations based on miniature-sized 316L stainless steel DED-fabricated samples were carried out to shed light on the deformation mechanism of FCC materials at the grain scale. Furthermore, the dependency of latent strain hardening parameters based on the Bassani-Wu hardening model for a single crystal scale is investigated, where the Voronoi tessellation method and probability theory are utilized for the definition of the grain distribution. A hierarchical polycrystalline modeling methodology based on a representative volume element (RVE) with the realistic impact of grain boundaries was adopted for fracture assessment of the AM parts. To qualify the validity of process-structure-property relationships, cohesive zone damage surfaces were used between melt pool boundaries as the predefined initial cracks and the performance of the model is validated based on the experimental observations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_048%2F0007350" target="_blank" >EF17_048/0007350: Předaplikační výzkum funkčně graduovaných materiálů pomocí aditivních technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
METALS
ISSN
2075-4701
e-ISSN
2075-4701
Svazek periodika
14
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
18
Strana od-do
nestránkováno
Kód UT WoS článku
000833097300001
EID výsledku v databázi Scopus
2-s2.0-85132796323