Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Gas suction and mass transfer in gas-liquid up-flow ejector loop reactors. Effect of nozzle and ejector geometry

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26722445%3A_____%2F18%3AN0000052" target="_blank" >RIV/26722445:_____/18:N0000052 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60461373:22340/18:43916342

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1385894718313111" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1385894718313111</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cej.2018.07.079" target="_blank" >10.1016/j.cej.2018.07.079</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Gas suction and mass transfer in gas-liquid up-flow ejector loop reactors. Effect of nozzle and ejector geometry

  • Popis výsledku v původním jazyce

    The aim is to develop a method for the design of up-flow ejector loop reactors for coalescent systems respecting the different energy dissipation and mechanism of interfacial mass transfer in the ejector and in the holding vessel. Measurements and correlations of gas entrainment rate (mG/mL) and of oxygen volumetric mass transfer coefficient (kLa) are reported describing their dependencies on operating conditions for various geometries of the ejector. The results show that the energy supplied into the ejector must be expressed as a two independent parts: one representing the energy of inner turbulence of the liquid jet leaving the nozzle and the one representing the kinetic energy of axial liquid flow entering the suction chamber. Turbulent transverse motion generated in the nozzle characterized by its pressure loss coefficient, produced surface roughness of the jet and plays a dominant role in its ability to entrain the surrounding gas. The kinetic energy of the axial liquid flow characterized by liquid velocity in the nozzle vn, diminished for the energy spent on gas compression is utilized in the mixing shock for dispersing of the entrained gas into the liquid. The correlations formed for a prediction of mG/mL and of kLa in ejector based on the more of 700 individual ejector configurations have average deviation lower than 8%. Mass transfer and gas hold-up in the holding vessel were modeled using the previously verified slip velocity concept, characterizing the mutual flow of phases in homogeneous bubble beds. An example of the application of the correlations for evaluation of mass transfer performance of Ejector Loop Reactor is shown.

  • Název v anglickém jazyce

    Gas suction and mass transfer in gas-liquid up-flow ejector loop reactors. Effect of nozzle and ejector geometry

  • Popis výsledku anglicky

    The aim is to develop a method for the design of up-flow ejector loop reactors for coalescent systems respecting the different energy dissipation and mechanism of interfacial mass transfer in the ejector and in the holding vessel. Measurements and correlations of gas entrainment rate (mG/mL) and of oxygen volumetric mass transfer coefficient (kLa) are reported describing their dependencies on operating conditions for various geometries of the ejector. The results show that the energy supplied into the ejector must be expressed as a two independent parts: one representing the energy of inner turbulence of the liquid jet leaving the nozzle and the one representing the kinetic energy of axial liquid flow entering the suction chamber. Turbulent transverse motion generated in the nozzle characterized by its pressure loss coefficient, produced surface roughness of the jet and plays a dominant role in its ability to entrain the surrounding gas. The kinetic energy of the axial liquid flow characterized by liquid velocity in the nozzle vn, diminished for the energy spent on gas compression is utilized in the mixing shock for dispersing of the entrained gas into the liquid. The correlations formed for a prediction of mG/mL and of kLa in ejector based on the more of 700 individual ejector configurations have average deviation lower than 8%. Mass transfer and gas hold-up in the holding vessel were modeled using the previously verified slip velocity concept, characterizing the mutual flow of phases in homogeneous bubble beds. An example of the application of the correlations for evaluation of mass transfer performance of Ejector Loop Reactor is shown.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20700 - Environmental engineering

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Chemical Engineering Journal

  • ISSN

    1385-8947

  • e-ISSN

    1873-3212

  • Svazek periodika

    353

  • Číslo periodika v rámci svazku

    December

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    17

  • Strana od-do

    436-452

  • Kód UT WoS článku

    000441527900043

  • EID výsledku v databázi Scopus

    2-s2.0-85050395579