Lattice defects in severely deformed biomedical Ti-6Al-7Nb alloy and thermal stability of its ultra-fine grained microstructure
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26722445%3A_____%2F19%3AN0000036" target="_blank" >RIV/26722445:_____/19:N0000036 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61389021:_____/19:00502368 RIV/00216208:11320/19:10398949
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0925838819306255" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0925838819306255</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jallcom.2019.02.173" target="_blank" >10.1016/j.jallcom.2019.02.173</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lattice defects in severely deformed biomedical Ti-6Al-7Nb alloy and thermal stability of its ultra-fine grained microstructure
Popis výsledku v původním jazyce
Biomedical Ti-6Al-7Nb alloy was prepared by a dedicated thermal treatment followed by equal-channel angular pressing (ECAP) and extrusion. Ultra-fine grained duplex microstructure consisting of deformed primary alpha-grains and fragmented alpha + beta region was achieved. Microstructural changes during heating with the rate of 5 degrees C/min were studied by in-situ electrical resistance. Microstructure after deformation and also after subsequent heating was thoroughly characterized by scanning electron microscopy, X-ray diffraction, and positron annihilation spectroscopy (PAS). X-ray diffraction and positron annihilation spectroscopy proved a very high dislocation density and the presence of high concentration of vacancy clusters in deformed material. The ultra-fine grained microstructure of Ti-6Al-7Nb alloy is stable up to 440 degrees C, while upon heating to 550 degrees C and to 660 degrees C, the dislocation density decreases and vacancy clusters disappear. Enhanced microhardness can be achieved by ECAP followed by aging at 500 degrees C. Upon heating to 660 degrees C, the microhardness decreases due to ongoing recovery and recrystallization. Coincidence Doppler broadening (CDB), a special method of PAS, proved that dislocation cores are preferentially occupied by Al atoms that are known to cause substitutional solid solution strengthening.
Název v anglickém jazyce
Lattice defects in severely deformed biomedical Ti-6Al-7Nb alloy and thermal stability of its ultra-fine grained microstructure
Popis výsledku anglicky
Biomedical Ti-6Al-7Nb alloy was prepared by a dedicated thermal treatment followed by equal-channel angular pressing (ECAP) and extrusion. Ultra-fine grained duplex microstructure consisting of deformed primary alpha-grains and fragmented alpha + beta region was achieved. Microstructural changes during heating with the rate of 5 degrees C/min were studied by in-situ electrical resistance. Microstructure after deformation and also after subsequent heating was thoroughly characterized by scanning electron microscopy, X-ray diffraction, and positron annihilation spectroscopy (PAS). X-ray diffraction and positron annihilation spectroscopy proved a very high dislocation density and the presence of high concentration of vacancy clusters in deformed material. The ultra-fine grained microstructure of Ti-6Al-7Nb alloy is stable up to 440 degrees C, while upon heating to 550 degrees C and to 660 degrees C, the dislocation density decreases and vacancy clusters disappear. Enhanced microhardness can be achieved by ECAP followed by aging at 500 degrees C. Upon heating to 660 degrees C, the microhardness decreases due to ongoing recovery and recrystallization. Coincidence Doppler broadening (CDB), a special method of PAS, proved that dislocation cores are preferentially occupied by Al atoms that are known to cause substitutional solid solution strengthening.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace<br>N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Alloys and Compounds
ISSN
0925-8388
e-ISSN
1873-4669
Svazek periodika
788
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
10
Strana od-do
881-890
Kód UT WoS článku
000462767000101
EID výsledku v databázi Scopus
2-s2.0-85062212035