Lattice defects in severely deformed biomedical Ti-6Al-7Nb alloy and thermal stability of its ultra-fine grained microstructure
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F19%3A00502368" target="_blank" >RIV/61389021:_____/19:00502368 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/19:10398949 RIV/26722445:_____/19:N0000036
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0925838819306255?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0925838819306255?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jallcom.2019.02.173" target="_blank" >10.1016/j.jallcom.2019.02.173</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lattice defects in severely deformed biomedical Ti-6Al-7Nb alloy and thermal stability of its ultra-fine grained microstructure
Popis výsledku v původním jazyce
Biomedical Ti-6Al-7Nb alloy was prepared by a dedicated thermal treatment followed by equal-channel angular pressing (ECAP) and extrusion. Ultra-fine grained duplex microstructure consisting of deformed primary α-grains and fragmented α + β region was achieved. Microstructural changes during heating with the rate of 5 °C/min were studied by in-situ electrical resistance. Microstructure after deformation and also after subsequent heating was thoroughly characterized by scanning electron microscopy, X-ray diffraction, and positron annihilation spectroscopy (PAS). X-ray diffraction and positron annihilation spectroscopy proved a very high dislocation density and the presence of high concentration of vacancy clusters in deformed material. The ultra-fine grained microstructure of Ti-6Al-7Nb alloy is stable up to 440 °C, while upon heating to 550 °C and to 660 °C, the dislocation density decreases and vacancy clusters disappear. Enhanced microhardness can be achieved by ECAP followed by aging at 500 °C. Upon heating to 660 °C, the microhardness decreases due to ongoing recovery and recrystallization. Coincidence Doppler broadening (CDB), a special method of PAS, proved that dislocation cores are preferentially occupied by Al atoms that are known to cause substitutional solid solution strengthening.
Název v anglickém jazyce
Lattice defects in severely deformed biomedical Ti-6Al-7Nb alloy and thermal stability of its ultra-fine grained microstructure
Popis výsledku anglicky
Biomedical Ti-6Al-7Nb alloy was prepared by a dedicated thermal treatment followed by equal-channel angular pressing (ECAP) and extrusion. Ultra-fine grained duplex microstructure consisting of deformed primary α-grains and fragmented α + β region was achieved. Microstructural changes during heating with the rate of 5 °C/min were studied by in-situ electrical resistance. Microstructure after deformation and also after subsequent heating was thoroughly characterized by scanning electron microscopy, X-ray diffraction, and positron annihilation spectroscopy (PAS). X-ray diffraction and positron annihilation spectroscopy proved a very high dislocation density and the presence of high concentration of vacancy clusters in deformed material. The ultra-fine grained microstructure of Ti-6Al-7Nb alloy is stable up to 440 °C, while upon heating to 550 °C and to 660 °C, the dislocation density decreases and vacancy clusters disappear. Enhanced microhardness can be achieved by ECAP followed by aging at 500 °C. Upon heating to 660 °C, the microhardness decreases due to ongoing recovery and recrystallization. Coincidence Doppler broadening (CDB), a special method of PAS, proved that dislocation cores are preferentially occupied by Al atoms that are known to cause substitutional solid solution strengthening.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Alloys and Compounds
ISSN
0925-8388
e-ISSN
—
Svazek periodika
588
Číslo periodika v rámci svazku
5. 6. 2019
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
881-890
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85062212035