Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Surface Characterization and Electrochemical Behavior of AISI 316l Stainless Steel Machined with Green Supercritical CO2 Coolant

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26722445%3A_____%2F24%3AN0000053" target="_blank" >RIV/26722445:_____/24:N0000053 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s11665-023-08937-8" target="_blank" >https://link.springer.com/article/10.1007/s11665-023-08937-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11665-023-08937-8" target="_blank" >10.1007/s11665-023-08937-8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Surface Characterization and Electrochemical Behavior of AISI 316l Stainless Steel Machined with Green Supercritical CO2 Coolant

  • Popis výsledku v původním jazyce

    Cutting fluids are usually applied during milling to reduce the friction and to protect the tool and the material from corrosion. These fluids are associated with toxicity and environmental problems. Moreover, the waste management of cutting fluids entails large expenses. The need to reduce cutting fluids has fostered the use of alternative coolants such as supercritical (sc) CO2, alone or with minimum quantity lubrication (MQL). sc CO2 and sc CO2 + MQL coolants have been studied for face milling of a cold worked (CW) AISI 316L stainless steel (SS), evaluating their effect on the residual stresses generated in the surface, in the outermost microstructure of this material, and the corrosion performance. Furthermore, they are compared with those caused by traditional face milling and with a manually ground-generated surface. Ultrafine grain (UFG) layers of about 1 lm and passive layers (of similar chemical compositions) are identified for all the surfaces under study. The three milling processes under study generate a deformation layer under the UFG layer that does not appear below ground surfaces. Moreover, the preexistent compressive stresses created by the CW process change into tensile, being higher for the alternative green machining processes than for the traditional one. The probability of undergoing pitting (studied with cyclic polarization curves) appears to be linked to the nature and structure of the passive layer (characterized by Auger spectroscopy and Mott–Schottky analyses, respectively). Electrochemical impedance spectroscopy studies also confirm similar electrochemical performances for all analyzed surfaces. The active-to-passive transitions of the SS, which have been characterized by electrochemical potentiodynamic reactivation tests, appear to be related to the stresses and deformation state of the deformed layers. Passivation on the alloy in acid media appears to be favored after the sc CO2 and sc CO2 + MQL alternative milling processes than after traditional face milling and grinding.

  • Název v anglickém jazyce

    Surface Characterization and Electrochemical Behavior of AISI 316l Stainless Steel Machined with Green Supercritical CO2 Coolant

  • Popis výsledku anglicky

    Cutting fluids are usually applied during milling to reduce the friction and to protect the tool and the material from corrosion. These fluids are associated with toxicity and environmental problems. Moreover, the waste management of cutting fluids entails large expenses. The need to reduce cutting fluids has fostered the use of alternative coolants such as supercritical (sc) CO2, alone or with minimum quantity lubrication (MQL). sc CO2 and sc CO2 + MQL coolants have been studied for face milling of a cold worked (CW) AISI 316L stainless steel (SS), evaluating their effect on the residual stresses generated in the surface, in the outermost microstructure of this material, and the corrosion performance. Furthermore, they are compared with those caused by traditional face milling and with a manually ground-generated surface. Ultrafine grain (UFG) layers of about 1 lm and passive layers (of similar chemical compositions) are identified for all the surfaces under study. The three milling processes under study generate a deformation layer under the UFG layer that does not appear below ground surfaces. Moreover, the preexistent compressive stresses created by the CW process change into tensile, being higher for the alternative green machining processes than for the traditional one. The probability of undergoing pitting (studied with cyclic polarization curves) appears to be linked to the nature and structure of the passive layer (characterized by Auger spectroscopy and Mott–Schottky analyses, respectively). Electrochemical impedance spectroscopy studies also confirm similar electrochemical performances for all analyzed surfaces. The active-to-passive transitions of the SS, which have been characterized by electrochemical potentiodynamic reactivation tests, appear to be related to the stresses and deformation state of the deformed layers. Passivation on the alloy in acid media appears to be favored after the sc CO2 and sc CO2 + MQL alternative milling processes than after traditional face milling and grinding.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Materials Engineering and Performance

  • ISSN

    1059-9495

  • e-ISSN

    1544-1024

  • Svazek periodika

    33

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

    3811–3826

  • Kód UT WoS článku

    001103728700002

  • EID výsledku v databázi Scopus

    2-s2.0-85176599978