Mild solutions of second-order semilinear impulsive differential inclusions in Banach spaces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26867184%3A_____%2F22%3AN0000004" target="_blank" >RIV/26867184:_____/22:N0000004 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/10/4/672" target="_blank" >https://www.mdpi.com/2227-7390/10/4/672</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math10040672" target="_blank" >10.3390/math10040672</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mild solutions of second-order semilinear impulsive differential inclusions in Banach spaces
Popis výsledku v původním jazyce
In this paper, the existence of a mild solution to the Cauchy problem for impulsive semilinear second-order differential inclusion in a Banach space is investigated in the case when the nonlinear term also depends on the first derivative. This purpose is achieved by combining the Kakutani fixed point theorem with the approximation solvability method and the weak topology. This combination enables obtaining the result under easily verifiable and not restrictive conditions on the impulsive terms, the cosine family generated by the linear operator and the right-hand side while avoiding any requirement for compactness. Firstly, the problems without impulses are investigated, and then their solutions are glued together to construct the solution to the impulsive problem step by step. The paper concludes with an application of the obtained results to the generalized telegraph equation with a Balakrishnan–Taylor-type damping term.
Název v anglickém jazyce
Mild solutions of second-order semilinear impulsive differential inclusions in Banach spaces
Popis výsledku anglicky
In this paper, the existence of a mild solution to the Cauchy problem for impulsive semilinear second-order differential inclusion in a Banach space is investigated in the case when the nonlinear term also depends on the first derivative. This purpose is achieved by combining the Kakutani fixed point theorem with the approximation solvability method and the weak topology. This combination enables obtaining the result under easily verifiable and not restrictive conditions on the impulsive terms, the cosine family generated by the linear operator and the right-hand side while avoiding any requirement for compactness. Firstly, the problems without impulses are investigated, and then their solutions are glued together to construct the solution to the impulsive problem step by step. The paper concludes with an application of the obtained results to the generalized telegraph equation with a Balakrishnan–Taylor-type damping term.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
25
Strana od-do
1-25
Kód UT WoS článku
000761402300001
EID výsledku v databázi Scopus
2-s2.0-85125441598