The Origination of the Calculus of Variations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F27266150%3A_____%2F13%3A%230000087" target="_blank" >RIV/27266150:_____/13:#0000087 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Origination of the Calculus of Variations
Popis výsledku v původním jazyce
This article considers something about the origin of the calculus of variations. Optimal control deals with the problem of finding a control law for a given system such that a certain optimality criterion is achieved. An optimal control is a set of differential equations describing the paths of the control variables that minimize the cost functional. Optimal control theory, an extension of the calculus of variations, is a mathematical optimization method for deriving control policies. The calculus of variations is concerned with the maxima or minima of functionals, which are collectively called extrema. Indeed, the different approaches tried out in its solution may be considered, in a more or less direct way, as the starting point for new theories. While the true ?mathematical? demonstration involves what we now call the calculus of variations, a theory for which Euler and then Lagrange established the foundations, the solution which Johann Bernoulli originally produced, obtained with
Název v anglickém jazyce
The Origination of the Calculus of Variations
Popis výsledku anglicky
This article considers something about the origin of the calculus of variations. Optimal control deals with the problem of finding a control law for a given system such that a certain optimality criterion is achieved. An optimal control is a set of differential equations describing the paths of the control variables that minimize the cost functional. Optimal control theory, an extension of the calculus of variations, is a mathematical optimization method for deriving control policies. The calculus of variations is concerned with the maxima or minima of functionals, which are collectively called extrema. Indeed, the different approaches tried out in its solution may be considered, in a more or less direct way, as the starting point for new theories. While the true ?mathematical? demonstration involves what we now call the calculus of variations, a theory for which Euler and then Lagrange established the foundations, the solution which Johann Bernoulli originally produced, obtained with
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
AB - Dějiny
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů