Relaxation in Optimization Theory and Variational Calculus
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F20%3A00536072" target="_blank" >RIV/61388998:_____/20:00536072 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.degruyter.com/view/title/537021" target="_blank" >https://www.degruyter.com/view/title/537021</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/9783110590852" target="_blank" >10.1515/9783110590852</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Relaxation in Optimization Theory and Variational Calculus
Popis výsledku v původním jazyce
In this monograph, relaxation means an extension of optimization or variational problems in a certain natural way, typically by some continuity. Beside compactness, also convexity is the main attribute of the extended (so-called relaxed) problems,which yields existence and stability of their solutions as well as optimality conditions, or allows for using some fixed-point theorems, especially in noncooperative game theory. The book offers an exposition of an original abstract theory of convex compactifications and of application to various concrete problems in optimal control and calculus of variations. Classical Young measures and their numerous generalizations are used to capture various fast oscillation and possibly concentration phenomena in the limits. In particular, one can construct convex locally compact metrizable envelopes of Lebesgue spaces, typically occuring in original (nonrelaxed) problems and here embedded densely into such envelopes. Also numerical aspects are pursued. This new edition reflects in particular also the achievements within quarter a century that passed from the first edition. Many improvements of the presentation and expansions have been added, too.
Název v anglickém jazyce
Relaxation in Optimization Theory and Variational Calculus
Popis výsledku anglicky
In this monograph, relaxation means an extension of optimization or variational problems in a certain natural way, typically by some continuity. Beside compactness, also convexity is the main attribute of the extended (so-called relaxed) problems,which yields existence and stability of their solutions as well as optimality conditions, or allows for using some fixed-point theorems, especially in noncooperative game theory. The book offers an exposition of an original abstract theory of convex compactifications and of application to various concrete problems in optimal control and calculus of variations. Classical Young measures and their numerous generalizations are used to capture various fast oscillation and possibly concentration phenomena in the limits. In particular, one can construct convex locally compact metrizable envelopes of Lebesgue spaces, typically occuring in original (nonrelaxed) problems and here embedded densely into such envelopes. Also numerical aspects are pursued. This new edition reflects in particular also the achievements within quarter a century that passed from the first edition. Many improvements of the presentation and expansions have been added, too.
Klasifikace
Druh
B - Odborná kniha
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-04956S" target="_blank" >GA19-04956S: Dynamika a nelineární chování pokročilých kompozitních struktur; modelování a optimalizace</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
978-3-11-058962-7
Počet stran knihy
474
Název nakladatele
Walter de Gruyter
Místo vydání
Berlin
Kód UT WoS knihy
—