Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Coarse-convex-compactification approach to numerical solution of nonconvex variational problems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10050658" target="_blank" >RIV/00216208:11320/10:10050658 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61388998:_____/10:00351985

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Coarse-convex-compactification approach to numerical solution of nonconvex variational problems

  • Popis výsledku v původním jazyce

    A numerical method for a (possibly non-convex) scalar variational problem is proposed. This method allows for computation of the Young-measure solution of the generalized relaxed version of the original problem and applies to those cases with polynomialfunctionals. The Young measures involved in the relaxed problem can be represented by their algebraic moments and also a finite-element mesh is used. Eventually, thus obtained convex semidefinite program can be solved by efficient specialized mathematical-programming solvers. This method is justified by convergence analysis and eventually tested on a 2-dimensional benchmark numerical example. It serves as an example how convex compactification can efficiently be used numerically if enough ``small'', i.e. enough coarse.

  • Název v anglickém jazyce

    Coarse-convex-compactification approach to numerical solution of nonconvex variational problems

  • Popis výsledku anglicky

    A numerical method for a (possibly non-convex) scalar variational problem is proposed. This method allows for computation of the Young-measure solution of the generalized relaxed version of the original problem and applies to those cases with polynomialfunctionals. The Young measures involved in the relaxed problem can be represented by their algebraic moments and also a finite-element mesh is used. Eventually, thus obtained convex semidefinite program can be solved by efficient specialized mathematical-programming solvers. This method is justified by convergence analysis and eventually tested on a 2-dimensional benchmark numerical example. It serves as an example how convex compactification can efficiently be used numerically if enough ``small'', i.e. enough coarse.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Numerical Functional Analysis and Optimization

  • ISSN

    0163-0563

  • e-ISSN

  • Svazek periodika

    31

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    29

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus