Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deep Learning Model for CS-Based Signal Recovery for IRS-Assisted Near-Field THz MIMO System

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F29142890%3A_____%2F24%3A00048979" target="_blank" >RIV/29142890:_____/24:00048979 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10660298" target="_blank" >https://ieeexplore.ieee.org/document/10660298</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/OJVT.2024.3452412" target="_blank" >10.1109/OJVT.2024.3452412</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deep Learning Model for CS-Based Signal Recovery for IRS-Assisted Near-Field THz MIMO System

  • Popis výsledku v původním jazyce

    Terahertz (THz) communication is a cutting-edge technology for the sixth-generation (6G) networks, offering vast bandwidths and data rates up to terabits per second, significantly advancing vehicular connectivity and services. However, THz signals are impacted by attenuation, path loss, and beam misalignment. Furthermore, the requisite high Nyquist sampling rates for THz systems increase the computational and system complexity of the receiver. A promising solution to navigate these obstacles involves the use of intelligent reflecting surfaces (IRS)-enhanced multiple-input multiple-output (MIMO) technology, which steers THz wave propagation. However, the substantial dimensions associated with IRS and MIMO extend the near-field, particularly at THz frequencies, as indicated by the Rayleigh distance and suffer from beam squint. To reduce system complexity and reduce sampling to sub-Nyquist rate, we propose a novel receiver design for an IRS-assisted near-field MIMO THz system that employs low-complexity compressed sensing. This method introduces an IRS signal-matched (IRSSM) measurement matrix with beam squint for capturing the transmitted signal at a sub-Nyquist rate, taking advantage of the sparsity in the signal and THz channels, and signal recovery using the deep learning (DL) model. Simulation results for symbol error rate (SER) and normalized mean square error (NMSE) performance indicate that the proposed DL-based receiver outperforms conventional recovery algorithms based on orthogonal matching pursuit (OMP) CS-recovery and dictionary-shrinkage estimation (DSE).

  • Název v anglickém jazyce

    Deep Learning Model for CS-Based Signal Recovery for IRS-Assisted Near-Field THz MIMO System

  • Popis výsledku anglicky

    Terahertz (THz) communication is a cutting-edge technology for the sixth-generation (6G) networks, offering vast bandwidths and data rates up to terabits per second, significantly advancing vehicular connectivity and services. However, THz signals are impacted by attenuation, path loss, and beam misalignment. Furthermore, the requisite high Nyquist sampling rates for THz systems increase the computational and system complexity of the receiver. A promising solution to navigate these obstacles involves the use of intelligent reflecting surfaces (IRS)-enhanced multiple-input multiple-output (MIMO) technology, which steers THz wave propagation. However, the substantial dimensions associated with IRS and MIMO extend the near-field, particularly at THz frequencies, as indicated by the Rayleigh distance and suffer from beam squint. To reduce system complexity and reduce sampling to sub-Nyquist rate, we propose a novel receiver design for an IRS-assisted near-field MIMO THz system that employs low-complexity compressed sensing. This method introduces an IRS signal-matched (IRSSM) measurement matrix with beam squint for capturing the transmitted signal at a sub-Nyquist rate, taking advantage of the sparsity in the signal and THz channels, and signal recovery using the deep learning (DL) model. Simulation results for symbol error rate (SER) and normalized mean square error (NMSE) performance indicate that the proposed DL-based receiver outperforms conventional recovery algorithms based on orthogonal matching pursuit (OMP) CS-recovery and dictionary-shrinkage estimation (DSE).

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Open Journal of Vehicular Technology

  • ISSN

    2644-1330

  • e-ISSN

  • Svazek periodika

    5

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    1-10

  • Kód UT WoS článku

    001327401100002

  • EID výsledku v databázi Scopus