Cascaded Channel Estimator for IRS-Aided mmWave Hybrid MIMO System
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021439" target="_blank" >RIV/62690094:18450/24:50021439 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10330633" target="_blank" >https://ieeexplore.ieee.org/document/10330633</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/LWC.2023.3337289" target="_blank" >10.1109/LWC.2023.3337289</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cascaded Channel Estimator for IRS-Aided mmWave Hybrid MIMO System
Popis výsledku v původním jazyce
The synergistic integration of the intelligent reflecting surface (IRS) and millimeter wave (mmWave) multiple-input multiple-output (MIMO) system is a potential solution for future wireless communication systems, aiming to achieve exceptionally high data rates with enhanced coverage. However, estimation of the cascaded channel state information is essential for beamforming in mmWave MIMO systems with IRS. Unlike conventional MIMO systems, channel estimation for IRS-aided mmWave MIMO systems is challenging due to the limited signal processing capability of the IRS. In this letter, we propose an online sparse exponential forgetting window least mean square-based channel estimator for IRS-assisted mmWave hybrid MIMO systems. Furthermore, we compare accuracy of the proposed estimator with the existing sparse estimators such as orthogonal matching pursuit, sparse Bayesian learning, and oracle least square for benchmarking. Additionally, we perform an analysis of the spectral efficiency and computational complexity of the proposed algorithms. Simulations corroborate superior performance of the proposed method in terms of accuracy, complexity, and robustness.
Název v anglickém jazyce
Cascaded Channel Estimator for IRS-Aided mmWave Hybrid MIMO System
Popis výsledku anglicky
The synergistic integration of the intelligent reflecting surface (IRS) and millimeter wave (mmWave) multiple-input multiple-output (MIMO) system is a potential solution for future wireless communication systems, aiming to achieve exceptionally high data rates with enhanced coverage. However, estimation of the cascaded channel state information is essential for beamforming in mmWave MIMO systems with IRS. Unlike conventional MIMO systems, channel estimation for IRS-aided mmWave MIMO systems is challenging due to the limited signal processing capability of the IRS. In this letter, we propose an online sparse exponential forgetting window least mean square-based channel estimator for IRS-assisted mmWave hybrid MIMO systems. Furthermore, we compare accuracy of the proposed estimator with the existing sparse estimators such as orthogonal matching pursuit, sparse Bayesian learning, and oracle least square for benchmarking. Additionally, we perform an analysis of the spectral efficiency and computational complexity of the proposed algorithms. Simulations corroborate superior performance of the proposed method in terms of accuracy, complexity, and robustness.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Wireless Communications Letters
ISSN
2162-2337
e-ISSN
2162-2345
Svazek periodika
13
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
5
Strana od-do
622-626
Kód UT WoS článku
001184396700012
EID výsledku v databázi Scopus
2-s2.0-85179082193