Performance Analysis of Sparse Channel Estimators for Millimeter Wave Hybrid MIMO Systems with Non-Ideal Hardware
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020430" target="_blank" >RIV/62690094:18450/23:50020430 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10109185/" target="_blank" >https://ieeexplore.ieee.org/document/10109185/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TVT.2023.3270240" target="_blank" >10.1109/TVT.2023.3270240</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Performance Analysis of Sparse Channel Estimators for Millimeter Wave Hybrid MIMO Systems with Non-Ideal Hardware
Popis výsledku v původním jazyce
Millimeter wave (mmWave) multiple-input multiple-output (MIMO) is the state-of-the-art physical layer technique for the fifth and beyond fifth-generation (5G/B5G) wireless communication systems. However, existing works in mmWave hybrid (analog and digital) MIMO systems do not adequately address the impact of unavoidable residual transceiver hardware impairments (HIs). This paper, considers a mmWave hybrid MIMO system with residual HIs and estimates the channel of considered system in a downlink scenario. The residual transceiver HIs are modeled as additive distortion noise, that severely affects the received pilot and information signals, which makes channel estimation a challenging task. As distortion noise is non-stationary, hence, an online adaptive filtering-based zero-attracting least mean square (ZALMS) is proposed. To ensure a lower mean square error the range of step-size and regularization parameters are obtained. Further, to achieve a faster convergence rate a sparse-initiated ZALMS (SI-ZALMS) is proposed. Furthermore, the impact of HIs on the mean square deviation and spectral efficiency is also analyzed. The proposed method offers significantly lower computational complexity as compared with the existing sparse channel estimation methods like Bayesian compressive sensing and sparse Bayesian learning. Simulation and analytical results corroborate the superiority of the proposed method as compared with existing methods. IEEE
Název v anglickém jazyce
Performance Analysis of Sparse Channel Estimators for Millimeter Wave Hybrid MIMO Systems with Non-Ideal Hardware
Popis výsledku anglicky
Millimeter wave (mmWave) multiple-input multiple-output (MIMO) is the state-of-the-art physical layer technique for the fifth and beyond fifth-generation (5G/B5G) wireless communication systems. However, existing works in mmWave hybrid (analog and digital) MIMO systems do not adequately address the impact of unavoidable residual transceiver hardware impairments (HIs). This paper, considers a mmWave hybrid MIMO system with residual HIs and estimates the channel of considered system in a downlink scenario. The residual transceiver HIs are modeled as additive distortion noise, that severely affects the received pilot and information signals, which makes channel estimation a challenging task. As distortion noise is non-stationary, hence, an online adaptive filtering-based zero-attracting least mean square (ZALMS) is proposed. To ensure a lower mean square error the range of step-size and regularization parameters are obtained. Further, to achieve a faster convergence rate a sparse-initiated ZALMS (SI-ZALMS) is proposed. Furthermore, the impact of HIs on the mean square deviation and spectral efficiency is also analyzed. The proposed method offers significantly lower computational complexity as compared with the existing sparse channel estimation methods like Bayesian compressive sensing and sparse Bayesian learning. Simulation and analytical results corroborate the superiority of the proposed method as compared with existing methods. IEEE
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Vehicular Technology
ISSN
0018-9545
e-ISSN
1939-9359
Svazek periodika
72
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
11913-11923
Kód UT WoS článku
001103676800064
EID výsledku v databázi Scopus
2-s2.0-85159706469