Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Performance Analysis of Sparse Channel Estimators for Millimeter Wave Hybrid MIMO Systems with Non-Ideal Hardware

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020430" target="_blank" >RIV/62690094:18450/23:50020430 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10109185/" target="_blank" >https://ieeexplore.ieee.org/document/10109185/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TVT.2023.3270240" target="_blank" >10.1109/TVT.2023.3270240</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Performance Analysis of Sparse Channel Estimators for Millimeter Wave Hybrid MIMO Systems with Non-Ideal Hardware

  • Popis výsledku v původním jazyce

    Millimeter wave (mmWave) multiple-input multiple-output (MIMO) is the state-of-the-art physical layer technique for the fifth and beyond fifth-generation (5G/B5G) wireless communication systems. However, existing works in mmWave hybrid (analog and digital) MIMO systems do not adequately address the impact of unavoidable residual transceiver hardware impairments (HIs). This paper, considers a mmWave hybrid MIMO system with residual HIs and estimates the channel of considered system in a downlink scenario. The residual transceiver HIs are modeled as additive distortion noise, that severely affects the received pilot and information signals, which makes channel estimation a challenging task. As distortion noise is non-stationary, hence, an online adaptive filtering-based zero-attracting least mean square (ZALMS) is proposed. To ensure a lower mean square error the range of step-size and regularization parameters are obtained. Further, to achieve a faster convergence rate a sparse-initiated ZALMS (SI-ZALMS) is proposed. Furthermore, the impact of HIs on the mean square deviation and spectral efficiency is also analyzed. The proposed method offers significantly lower computational complexity as compared with the existing sparse channel estimation methods like Bayesian compressive sensing and sparse Bayesian learning. Simulation and analytical results corroborate the superiority of the proposed method as compared with existing methods. IEEE

  • Název v anglickém jazyce

    Performance Analysis of Sparse Channel Estimators for Millimeter Wave Hybrid MIMO Systems with Non-Ideal Hardware

  • Popis výsledku anglicky

    Millimeter wave (mmWave) multiple-input multiple-output (MIMO) is the state-of-the-art physical layer technique for the fifth and beyond fifth-generation (5G/B5G) wireless communication systems. However, existing works in mmWave hybrid (analog and digital) MIMO systems do not adequately address the impact of unavoidable residual transceiver hardware impairments (HIs). This paper, considers a mmWave hybrid MIMO system with residual HIs and estimates the channel of considered system in a downlink scenario. The residual transceiver HIs are modeled as additive distortion noise, that severely affects the received pilot and information signals, which makes channel estimation a challenging task. As distortion noise is non-stationary, hence, an online adaptive filtering-based zero-attracting least mean square (ZALMS) is proposed. To ensure a lower mean square error the range of step-size and regularization parameters are obtained. Further, to achieve a faster convergence rate a sparse-initiated ZALMS (SI-ZALMS) is proposed. Furthermore, the impact of HIs on the mean square deviation and spectral efficiency is also analyzed. The proposed method offers significantly lower computational complexity as compared with the existing sparse channel estimation methods like Bayesian compressive sensing and sparse Bayesian learning. Simulation and analytical results corroborate the superiority of the proposed method as compared with existing methods. IEEE

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20203 - Telecommunications

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Vehicular Technology

  • ISSN

    0018-9545

  • e-ISSN

    1939-9359

  • Svazek periodika

    72

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    11913-11923

  • Kód UT WoS článku

    001103676800064

  • EID výsledku v databázi Scopus

    2-s2.0-85159706469