Thermodynamics of Small Alkali Metal Halide Cluster Ions: Comparison of Classical Molecular Simulations with Experiment and Quantum Chemistry
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F15%3A43886623" target="_blank" >RIV/44555601:13440/15:43886623 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/15:10292878 RIV/67985858:_____/15:00472732
Výsledek na webu
<a href="http://dx.doi.org/10.1021/jp509401d" target="_blank" >http://dx.doi.org/10.1021/jp509401d</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/jp509401d" target="_blank" >10.1021/jp509401d</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Thermodynamics of Small Alkali Metal Halide Cluster Ions: Comparison of Classical Molecular Simulations with Experiment and Quantum Chemistry
Popis výsledku v původním jazyce
We evaluate the ability of selected classical molecular models to describe the thermodynamic and structural aspects of gas-phase hydration of alkali metal halide ions and the formation of small water clusters. To understand the effect of many-body interactions (polarization) and charge penetration effects on the accuracy of a force field, we perform Monte Carlo simulations with three rigid water models using different functional forms to account for these effects: (i) point charge nonpolarizable SPC/E, (ii) Drude point charge polarizable SWM4-DP, and (iii) Drude Gaussian charge polarizable BK3. Model predictions are compared with experimental Gibbs free energies and enthalpies of ion hydration, and with microscopic structural properties obtained from quantum DFT calculations. We find that all three models provide comparable predictions for pure water clusters and cation hydration but differ significantly in their description of anion hydration. None of the investigated classical force fields can consistently and quantitatively reproduce the experimental gas-phase hydration thermodynamics. The outcome of this study highlights the relation between the functional form that describes the effective intermolecular interactions and the accuracy of the resulting ion hydration properties.
Název v anglickém jazyce
Thermodynamics of Small Alkali Metal Halide Cluster Ions: Comparison of Classical Molecular Simulations with Experiment and Quantum Chemistry
Popis výsledku anglicky
We evaluate the ability of selected classical molecular models to describe the thermodynamic and structural aspects of gas-phase hydration of alkali metal halide ions and the formation of small water clusters. To understand the effect of many-body interactions (polarization) and charge penetration effects on the accuracy of a force field, we perform Monte Carlo simulations with three rigid water models using different functional forms to account for these effects: (i) point charge nonpolarizable SPC/E, (ii) Drude point charge polarizable SWM4-DP, and (iii) Drude Gaussian charge polarizable BK3. Model predictions are compared with experimental Gibbs free energies and enthalpies of ion hydration, and with microscopic structural properties obtained from quantum DFT calculations. We find that all three models provide comparable predictions for pure water clusters and cation hydration but differ significantly in their description of anion hydration. None of the investigated classical force fields can consistently and quantitatively reproduce the experimental gas-phase hydration thermodynamics. The outcome of this study highlights the relation between the functional form that describes the effective intermolecular interactions and the accuracy of the resulting ion hydration properties.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CF - Fyzikální chemie a teoretická chemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP208%2F10%2F1724" target="_blank" >GAP208/10/1724: Studium struktury a dynamiky povrchu ledu za přítomnosti příměsí a atmosférických polutantů pomocí molekulových simulací</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
ISSN
1089-5639
e-ISSN
—
Svazek periodika
119
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
488-500
Kód UT WoS článku
000348491800007
EID výsledku v databázi Scopus
—