Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Does Explicit Polarizability Improve Simulations of Phase Behavior of Ionic Liquids?

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F21%3A43923029" target="_blank" >RIV/60461373:22340/21:43923029 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://pubs.acs.org/doi/10.1021/acs.jctc.1c00518" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jctc.1c00518</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jctc.1c00518" target="_blank" >10.1021/acs.jctc.1c00518</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Does Explicit Polarizability Improve Simulations of Phase Behavior of Ionic Liquids?

  • Popis výsledku v původním jazyce

    Molecular dynamics simulations are performed for a test set of 20 aprotic ionic liquids to investigate whether including an explicit polarizability model in the force field leads to higher accuracy and reliability of the calculated phase behavior properties, especially the enthalpy of fusion. A classical nonpolarizable all-atom optimized potentials for liquid simulations (OPLS) force-field model developed by Canongia Lopes and Pádua (CL&amp;P) serves as a reference level of theory. Polarizability is included either in the form of Drude oscillators, resulting in the CL&amp;P-D models, or in the framework of the atomic multipole optimized energetics for biomolecular application (AMOEBA) force field with polarizable atomic sites. Benchmarking of the calculated fusion enthalpy values against the experimental data reveals that overall the nonpolarizable CL&amp;P model and polarizable CL&amp;P-D models perform similarly with average deviations of about 30%. However, fusion enthalpies from the CL&amp;P-D models exhibit a stronger correlation with their experimental counterparts. The least successful predictions are interestingly obtained from AMOEBA (deviation ca. 60%), which may indicate that a reparametrization of this force-field model is needed to achieve improved predictions of the fusion enthalpy. In general, all FF models tend to underestimate the fusion enthalpies. In addition, quantum chemical calculations are used to compute the electronic cohesive energies of the crystalline phases of the ionic liquids and of the interaction energies within the ion pair. Significant positive correlations are found between the fusion enthalpy and the cohesive energies. The character of the present anions predetermines the magnitude of individual mechanistic components of the interaction energy and related enthalpic and cohesive properties. © 2021 American Chemical Society

  • Název v anglickém jazyce

    Does Explicit Polarizability Improve Simulations of Phase Behavior of Ionic Liquids?

  • Popis výsledku anglicky

    Molecular dynamics simulations are performed for a test set of 20 aprotic ionic liquids to investigate whether including an explicit polarizability model in the force field leads to higher accuracy and reliability of the calculated phase behavior properties, especially the enthalpy of fusion. A classical nonpolarizable all-atom optimized potentials for liquid simulations (OPLS) force-field model developed by Canongia Lopes and Pádua (CL&amp;P) serves as a reference level of theory. Polarizability is included either in the form of Drude oscillators, resulting in the CL&amp;P-D models, or in the framework of the atomic multipole optimized energetics for biomolecular application (AMOEBA) force field with polarizable atomic sites. Benchmarking of the calculated fusion enthalpy values against the experimental data reveals that overall the nonpolarizable CL&amp;P model and polarizable CL&amp;P-D models perform similarly with average deviations of about 30%. However, fusion enthalpies from the CL&amp;P-D models exhibit a stronger correlation with their experimental counterparts. The least successful predictions are interestingly obtained from AMOEBA (deviation ca. 60%), which may indicate that a reparametrization of this force-field model is needed to achieve improved predictions of the fusion enthalpy. In general, all FF models tend to underestimate the fusion enthalpies. In addition, quantum chemical calculations are used to compute the electronic cohesive energies of the crystalline phases of the ionic liquids and of the interaction energies within the ion pair. Significant positive correlations are found between the fusion enthalpy and the cohesive energies. The character of the present anions predetermines the magnitude of individual mechanistic components of the interaction energy and related enthalpic and cohesive properties. © 2021 American Chemical Society

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ19-04150Y" target="_blank" >GJ19-04150Y: Kohezní vlastnosti a fázové rovnováhy iontových kapalin studovány přesnými výpočty a experimenty</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Chemical Theory and Computation

  • ISSN

    1549-9618

  • e-ISSN

  • Svazek periodika

    17

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    6225-6239

  • Kód UT WoS článku

    000708673100019

  • EID výsledku v databázi Scopus

    2-s2.0-85113335538