Does Explicit Polarizability Improve Molecular Dynamics Predictions of Glass Transition Temperatures of Ionic Liquids?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F22%3A43924664" target="_blank" >RIV/60461373:22340/22:43924664 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jpcb.1c10809" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpcb.1c10809</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpcb.1c10809" target="_blank" >10.1021/acs.jpcb.1c10809</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Does Explicit Polarizability Improve Molecular Dynamics Predictions of Glass Transition Temperatures of Ionic Liquids?
Popis výsledku v původním jazyce
Molecular dynamics simulations are used for predictions of the glass transition temperatures for a test set of five aprotic ionic liquids. Glass transitions are localized with the trend-shift method, analyzing volumetric and transport properties of bulk amorphous phases. A classical nonpolarizable all-atom OPLS force-field model developed by Canongia Lopes and Pádua (CL&P) is employed as a starting level of theory for all calculations. Alternative approaches of charge scaling and the Drude oscillator model, accounting for atomic polarizability either implicitly or explicitly, respectively, are used to investigate the sensitivity of the glass transition temperatures to induction effects. The former nonpolarizable model overestimates the glass transition temperature by tens of Kelvins (37 K on average). The charge-scaling technique yields a significant improvement, and the best estimations were achieved using polarizable simulations with the Drude model, which yielded an average deviation of 11 K. Although the volumetric data usually exhibit a lesser trend shift upon vitrification, their lower statistical uncertainty enables to predict the glass transition temperature with lower uncertainty than the ionic self-diffusivities, the temperature dependence of which is usually more scattered. Additional analyses of the simulated data were also performed, revealing that the Drude model predicts lower densities for most subcooled liquids but higher densities for the glasses than the original CL&P, and that the Drude model also invokes some longer-range organization of the subcooled liquid, greatly impacting the temperature trend of ionic self-diffusivities in the low-temperature region. © 2022 American Chemical Society.
Název v anglickém jazyce
Does Explicit Polarizability Improve Molecular Dynamics Predictions of Glass Transition Temperatures of Ionic Liquids?
Popis výsledku anglicky
Molecular dynamics simulations are used for predictions of the glass transition temperatures for a test set of five aprotic ionic liquids. Glass transitions are localized with the trend-shift method, analyzing volumetric and transport properties of bulk amorphous phases. A classical nonpolarizable all-atom OPLS force-field model developed by Canongia Lopes and Pádua (CL&P) is employed as a starting level of theory for all calculations. Alternative approaches of charge scaling and the Drude oscillator model, accounting for atomic polarizability either implicitly or explicitly, respectively, are used to investigate the sensitivity of the glass transition temperatures to induction effects. The former nonpolarizable model overestimates the glass transition temperature by tens of Kelvins (37 K on average). The charge-scaling technique yields a significant improvement, and the best estimations were achieved using polarizable simulations with the Drude model, which yielded an average deviation of 11 K. Although the volumetric data usually exhibit a lesser trend shift upon vitrification, their lower statistical uncertainty enables to predict the glass transition temperature with lower uncertainty than the ionic self-diffusivities, the temperature dependence of which is usually more scattered. Additional analyses of the simulated data were also performed, revealing that the Drude model predicts lower densities for most subcooled liquids but higher densities for the glasses than the original CL&P, and that the Drude model also invokes some longer-range organization of the subcooled liquid, greatly impacting the temperature trend of ionic self-diffusivities in the low-temperature region. © 2022 American Chemical Society.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-04150Y" target="_blank" >GJ19-04150Y: Kohezní vlastnosti a fázové rovnováhy iontových kapalin studovány přesnými výpočty a experimenty</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry B
ISSN
1520-6106
e-ISSN
—
Svazek periodika
126
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
2005-2013
Kód UT WoS článku
000772191100014
EID výsledku v databázi Scopus
2-s2.0-85125805769