Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A note on multiplier convergent series

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F16%3A43887712" target="_blank" >RIV/44555601:13440/16:43887712 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.sciencedirect.com/science/article/pii/S0166864116301870" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0166864116301870</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.topol.2016.08.013" target="_blank" >10.1016/j.topol.2016.08.013</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A note on multiplier convergent series

  • Popis výsledku v původním jazyce

    Given a topological ring $R$ and $mathscr{F}subset R^N$ a (formal) series $sum_{ninN}x_n$ in a topological $R$-module $E$ is {em $mathscr{F}$ multiplier convergent in $E$} (respectively {em $mathscr{F}$ multiplier Cauchy in $E$}) provided that the sequence ${sum_{i=0}^nr(i)x_i:ninN}$ of partial sums converges (respectively, is a Cauchy sequence) for every sequence function $rinmathscr{F}$. In this paper we investigate for which $mathscr{G}subset R^N$ every $mathscr{F}$ multiplier convergent (Cauchy) series is also $mathscr{G}$ multiplier convergent (Cauchy). We obtain some general theorems about the Cauchy version of this problem. In particular, we prove that every $Z^N$ multiplier Cauchy series is already $R^N$ multiplier Cauchy in every topological vector space. On the other hand, we construct examples that in particular show that a $Z^N$ multiplier convergent series need not to be even $Q^N$ multiplier convergent and that there are topological vector spaces containing non-trivial $Q^N$ multiplier convergent series that do not contain non-trivial $R^N$ convergent series. As a consequence of this example, there are topological vector spaces containing the topological group $Q^N$ (and thus $Z^N$ and $Z^{(N)}$ as well) that do not contain the topological vector space $R^N$. On the contrary, it was proved in cite{DSS}, that a sequentially complete topological vector space that contains the topological group $Z^{(N)}$ must already contain the topological vector space $R^N$. Hence our example demonstrates, that in the latter result, the condition of sequential completeness can not be weakened by assuming that the space in question contains the topological group $Z^N$ (which is the sequential completion of $Z^{(N)}$).

  • Název v anglickém jazyce

    A note on multiplier convergent series

  • Popis výsledku anglicky

    Given a topological ring $R$ and $mathscr{F}subset R^N$ a (formal) series $sum_{ninN}x_n$ in a topological $R$-module $E$ is {em $mathscr{F}$ multiplier convergent in $E$} (respectively {em $mathscr{F}$ multiplier Cauchy in $E$}) provided that the sequence ${sum_{i=0}^nr(i)x_i:ninN}$ of partial sums converges (respectively, is a Cauchy sequence) for every sequence function $rinmathscr{F}$. In this paper we investigate for which $mathscr{G}subset R^N$ every $mathscr{F}$ multiplier convergent (Cauchy) series is also $mathscr{G}$ multiplier convergent (Cauchy). We obtain some general theorems about the Cauchy version of this problem. In particular, we prove that every $Z^N$ multiplier Cauchy series is already $R^N$ multiplier Cauchy in every topological vector space. On the other hand, we construct examples that in particular show that a $Z^N$ multiplier convergent series need not to be even $Q^N$ multiplier convergent and that there are topological vector spaces containing non-trivial $Q^N$ multiplier convergent series that do not contain non-trivial $R^N$ convergent series. As a consequence of this example, there are topological vector spaces containing the topological group $Q^N$ (and thus $Z^N$ and $Z^{(N)}$ as well) that do not contain the topological vector space $R^N$. On the contrary, it was proved in cite{DSS}, that a sequentially complete topological vector space that contains the topological group $Z^{(N)}$ must already contain the topological vector space $R^N$. Hence our example demonstrates, that in the latter result, the condition of sequential completeness can not be weakened by assuming that the space in question contains the topological group $Z^N$ (which is the sequential completion of $Z^{(N)}$).

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Topology and its Applications

  • ISSN

    0166-8641

  • e-ISSN

  • Svazek periodika

    2016

  • Číslo periodika v rámci svazku

    211

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    10

  • Strana od-do

    28-37

  • Kód UT WoS článku

    000384781000004

  • EID výsledku v databázi Scopus