A note on multiplier convergent series
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F16%3A43887712" target="_blank" >RIV/44555601:13440/16:43887712 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0166864116301870" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0166864116301870</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.topol.2016.08.013" target="_blank" >10.1016/j.topol.2016.08.013</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A note on multiplier convergent series
Popis výsledku v původním jazyce
Given a topological ring $R$ and $mathscr{F}subset R^N$ a (formal) series $sum_{ninN}x_n$ in a topological $R$-module $E$ is {em $mathscr{F}$ multiplier convergent in $E$} (respectively {em $mathscr{F}$ multiplier Cauchy in $E$}) provided that the sequence ${sum_{i=0}^nr(i)x_i:ninN}$ of partial sums converges (respectively, is a Cauchy sequence) for every sequence function $rinmathscr{F}$. In this paper we investigate for which $mathscr{G}subset R^N$ every $mathscr{F}$ multiplier convergent (Cauchy) series is also $mathscr{G}$ multiplier convergent (Cauchy). We obtain some general theorems about the Cauchy version of this problem. In particular, we prove that every $Z^N$ multiplier Cauchy series is already $R^N$ multiplier Cauchy in every topological vector space. On the other hand, we construct examples that in particular show that a $Z^N$ multiplier convergent series need not to be even $Q^N$ multiplier convergent and that there are topological vector spaces containing non-trivial $Q^N$ multiplier convergent series that do not contain non-trivial $R^N$ convergent series. As a consequence of this example, there are topological vector spaces containing the topological group $Q^N$ (and thus $Z^N$ and $Z^{(N)}$ as well) that do not contain the topological vector space $R^N$. On the contrary, it was proved in cite{DSS}, that a sequentially complete topological vector space that contains the topological group $Z^{(N)}$ must already contain the topological vector space $R^N$. Hence our example demonstrates, that in the latter result, the condition of sequential completeness can not be weakened by assuming that the space in question contains the topological group $Z^N$ (which is the sequential completion of $Z^{(N)}$).
Název v anglickém jazyce
A note on multiplier convergent series
Popis výsledku anglicky
Given a topological ring $R$ and $mathscr{F}subset R^N$ a (formal) series $sum_{ninN}x_n$ in a topological $R$-module $E$ is {em $mathscr{F}$ multiplier convergent in $E$} (respectively {em $mathscr{F}$ multiplier Cauchy in $E$}) provided that the sequence ${sum_{i=0}^nr(i)x_i:ninN}$ of partial sums converges (respectively, is a Cauchy sequence) for every sequence function $rinmathscr{F}$. In this paper we investigate for which $mathscr{G}subset R^N$ every $mathscr{F}$ multiplier convergent (Cauchy) series is also $mathscr{G}$ multiplier convergent (Cauchy). We obtain some general theorems about the Cauchy version of this problem. In particular, we prove that every $Z^N$ multiplier Cauchy series is already $R^N$ multiplier Cauchy in every topological vector space. On the other hand, we construct examples that in particular show that a $Z^N$ multiplier convergent series need not to be even $Q^N$ multiplier convergent and that there are topological vector spaces containing non-trivial $Q^N$ multiplier convergent series that do not contain non-trivial $R^N$ convergent series. As a consequence of this example, there are topological vector spaces containing the topological group $Q^N$ (and thus $Z^N$ and $Z^{(N)}$ as well) that do not contain the topological vector space $R^N$. On the contrary, it was proved in cite{DSS}, that a sequentially complete topological vector space that contains the topological group $Z^{(N)}$ must already contain the topological vector space $R^N$. Hence our example demonstrates, that in the latter result, the condition of sequential completeness can not be weakened by assuming that the space in question contains the topological group $Z^N$ (which is the sequential completion of $Z^{(N)}$).
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Topology and its Applications
ISSN
0166-8641
e-ISSN
—
Svazek periodika
2016
Číslo periodika v rámci svazku
211
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
28-37
Kód UT WoS článku
000384781000004
EID výsledku v databázi Scopus
—