Influence of core and maltose surface modification of PEIs on their interaction with plasma proteins-Human serum albumin and lysozyme
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F17%3A43892836" target="_blank" >RIV/44555601:13440/17:43892836 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0927776516308797" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0927776516308797</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.colsurfb.2016.12.042" target="_blank" >10.1016/j.colsurfb.2016.12.042</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Influence of core and maltose surface modification of PEIs on their interaction with plasma proteins-Human serum albumin and lysozyme
Popis výsledku v původním jazyce
Regardless of the route of administration, some or all of a therapeutic agent will appear in the blood stream, where it can act on blood cells and other components of the plasma. Recently we have shown that poly(ethylene imines) (PEls) which interact with plasma proteins are taken up into erythrocyte membranes. These observations led us to investigate the interactions between maltose functionalized hyperbranched PEls (PEI-Mal) and plasma proteins. Two model proteins were chosen human serum albumin (HSA) (albumins constitute similar to 60% of all plasma proteins), and lysozyme. HSA is a negatively charged 66 kDa protein at neutral pH, whereas lysozyme is a positively charged 14 kDa protein. Fluorescence quenching and changes in the conformation of the amino acid tryptophan, diameter and zeta potential of proteins were investigated to evaluate the interaction of PEI-Mal with proteins. PEI-Mal interacts with both types of proteins. The strength of dendritic glycopolymer interactions was generally weak, especially with lysozyme. Greater changes were found with HSA, mainly triggered by hydrogen bonds and the electrostatic interaction properties of dendritic glycopolymers. Moreover, the structure and the size of PEI-Mal macromolecules affected these interactions; larger macromolecules with more sugar groups (95% maltose units) interacted more strongly with proteins than smaller ones with lower sugar modification (33% maltose units). Due to (i) the proven overall low toxicity of sugar-modified PEls and, (ii) their ability to interact preferentially through hydrogen bonds with proteins" of human plasma or possibly with other interesting protein targets, PEI-Mal is a good candidate for creating therapeutic nanoparticles in the fast developing field of nanomedicine. (C) 2017 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Influence of core and maltose surface modification of PEIs on their interaction with plasma proteins-Human serum albumin and lysozyme
Popis výsledku anglicky
Regardless of the route of administration, some or all of a therapeutic agent will appear in the blood stream, where it can act on blood cells and other components of the plasma. Recently we have shown that poly(ethylene imines) (PEls) which interact with plasma proteins are taken up into erythrocyte membranes. These observations led us to investigate the interactions between maltose functionalized hyperbranched PEls (PEI-Mal) and plasma proteins. Two model proteins were chosen human serum albumin (HSA) (albumins constitute similar to 60% of all plasma proteins), and lysozyme. HSA is a negatively charged 66 kDa protein at neutral pH, whereas lysozyme is a positively charged 14 kDa protein. Fluorescence quenching and changes in the conformation of the amino acid tryptophan, diameter and zeta potential of proteins were investigated to evaluate the interaction of PEI-Mal with proteins. PEI-Mal interacts with both types of proteins. The strength of dendritic glycopolymer interactions was generally weak, especially with lysozyme. Greater changes were found with HSA, mainly triggered by hydrogen bonds and the electrostatic interaction properties of dendritic glycopolymers. Moreover, the structure and the size of PEI-Mal macromolecules affected these interactions; larger macromolecules with more sugar groups (95% maltose units) interacted more strongly with proteins than smaller ones with lower sugar modification (33% maltose units). Due to (i) the proven overall low toxicity of sugar-modified PEls and, (ii) their ability to interact preferentially through hydrogen bonds with proteins" of human plasma or possibly with other interesting protein targets, PEI-Mal is a good candidate for creating therapeutic nanoparticles in the fast developing field of nanomedicine. (C) 2017 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10608 - Biochemistry and molecular biology
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Colloids and Surfaces B-Biointerfaces
ISSN
0927-7765
e-ISSN
—
Svazek periodika
2017
Číslo periodika v rámci svazku
152
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
18-28
Kód UT WoS článku
000398014100003
EID výsledku v databázi Scopus
—