Objective Clustering Inductive Technology of gene expression profiles Based on SOTA Clustering Algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F17%3A43893192" target="_blank" >RIV/44555601:13440/17:43893192 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.7124/bc.000961" target="_blank" >http://dx.doi.org/10.7124/bc.000961</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7124/bc.000961" target="_blank" >10.7124/bc.000961</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Objective Clustering Inductive Technology of gene expression profiles Based on SOTA Clustering Algorithm
Popis výsledku v původním jazyce
Development of the objective clustering inductive technology of gene expression profiles based on self-organizing SOTA clustering algorithm. Methods. Inductive methods of complex systems analysis were used as the basis to implement the objective clustering inductive technol- ogy of gene expression profiles. To determine optimal parameters of clustering algorithm opera- tion internal clustering quality criteria, external criterion and complex balance criterion were calculated. Results. Architecture of the objective clustering inductive technology based on SOTA clustering algorithm and step-by-step procedure of its implementation are presented in the paper. Charts of the internal, external and complex balance criteria versus algorithm?s parameters were obtained during simulation process. Analysis of the charts allows determining of the optimal parameters of the algorithm operation. Conclusion. Obtained results of the simulation have shown high effectiveness of the proposed technology. In case of gene expression profiles processing this approach creates the conditions for implementing the step-by-step cluster-bicluster technology of the data grouping at early stage of the gene regulatory network reconstruction.
Název v anglickém jazyce
Objective Clustering Inductive Technology of gene expression profiles Based on SOTA Clustering Algorithm
Popis výsledku anglicky
Development of the objective clustering inductive technology of gene expression profiles based on self-organizing SOTA clustering algorithm. Methods. Inductive methods of complex systems analysis were used as the basis to implement the objective clustering inductive technol- ogy of gene expression profiles. To determine optimal parameters of clustering algorithm opera- tion internal clustering quality criteria, external criterion and complex balance criterion were calculated. Results. Architecture of the objective clustering inductive technology based on SOTA clustering algorithm and step-by-step procedure of its implementation are presented in the paper. Charts of the internal, external and complex balance criteria versus algorithm?s parameters were obtained during simulation process. Analysis of the charts allows determining of the optimal parameters of the algorithm operation. Conclusion. Obtained results of the simulation have shown high effectiveness of the proposed technology. In case of gene expression profiles processing this approach creates the conditions for implementing the step-by-step cluster-bicluster technology of the data grouping at early stage of the gene regulatory network reconstruction.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biopolymers and Cell
ISSN
0233-7657
e-ISSN
—
Svazek periodika
2017
Číslo periodika v rámci svazku
33(5)
Stát vydavatele periodika
UA - Ukrajina
Počet stran výsledku
14
Strana od-do
379-392
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85040925997