Model of the Objective Clustering Inductive Technology of Gene Expression Profiles Based on SOTA and DBSCAN Clustering Algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F18%3A43893027" target="_blank" >RIV/44555601:13440/18:43893027 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-70581-1_2" target="_blank" >http://dx.doi.org/10.1007/978-3-319-70581-1_2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-70581-1_2" target="_blank" >10.1007/978-3-319-70581-1_2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Model of the Objective Clustering Inductive Technology of Gene Expression Profiles Based on SOTA and DBSCAN Clustering Algorithms
Popis výsledku v původním jazyce
The paper presents the hybrid model of the objective clustering inductive technology based on complex using of the self-organizing SOTA and the density DBSCAN clustering algorithms. The inductive methods of complex systems analysis were used as the basis to implement the objective clustering inductive technology of gene expression profiles. To estimate the clustering quality for equal power subsets (include the same quantity of pairwise similar objects) the complex multiplicative criterion was calculated as the combination of the Calinski-Harabasz criterion and WB-index. The external clustering quality criterion is calculated as the normalized difference of the internal clustering quality criteria for the equal power subsets. The final decision concerning the determination of the optimal parameters of the clustering algorithm operation is done based on the maximum value of the Harrington desirability function that takes into account both the character of the objects and the clusters distribution in various clustering and the difference between clustering, which are implemented on the equal power subsets. The studied data grouping within the framework of the objective clustering inductive technology was performed in two stages. Firstly, the studied gene expression profiles were grouped with the use DBSCAN clustering algorithm. Then, the obtained set of gene expression profiles was divided into two clusters using SOTA clustering algorithm. This step-by-step procedure of the data clustering crates the conditions to save more useful information for following data processing.
Název v anglickém jazyce
Model of the Objective Clustering Inductive Technology of Gene Expression Profiles Based on SOTA and DBSCAN Clustering Algorithms
Popis výsledku anglicky
The paper presents the hybrid model of the objective clustering inductive technology based on complex using of the self-organizing SOTA and the density DBSCAN clustering algorithms. The inductive methods of complex systems analysis were used as the basis to implement the objective clustering inductive technology of gene expression profiles. To estimate the clustering quality for equal power subsets (include the same quantity of pairwise similar objects) the complex multiplicative criterion was calculated as the combination of the Calinski-Harabasz criterion and WB-index. The external clustering quality criterion is calculated as the normalized difference of the internal clustering quality criteria for the equal power subsets. The final decision concerning the determination of the optimal parameters of the clustering algorithm operation is done based on the maximum value of the Harrington desirability function that takes into account both the character of the objects and the clusters distribution in various clustering and the difference between clustering, which are implemented on the equal power subsets. The studied data grouping within the framework of the objective clustering inductive technology was performed in two stages. Firstly, the studied gene expression profiles were grouped with the use DBSCAN clustering algorithm. Then, the obtained set of gene expression profiles was divided into two clusters using SOTA clustering algorithm. This step-by-step procedure of the data clustering crates the conditions to save more useful information for following data processing.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent Systems and Computing
ISBN
978-3-319-70580-4
ISSN
2194-5357
e-ISSN
neuvedeno
Počet stran výsledku
19
Strana od-do
21-39
Název nakladatele
Springer, Cham
Místo vydání
Springer International Publishing
Místo konání akce
Lviv, Ukraine
Datum konání akce
5. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—