The effects of heuristic strategies on solving of problems in mathematics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F18%3A43893587" target="_blank" >RIV/44555601:13440/18:43893587 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11410/18:10377434
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The effects of heuristic strategies on solving of problems in mathematics
Popis výsledku v původním jazyce
It is a universally accepted truth that problem solving forms the basis for successful mathematics education. Problem solving is an indicator of the state of comprehension of the concepts that pupils are taught. They help their solvers realize what former knowledge is applicable in a new situation, what role this knowledge plays in it, and which piece of knowledge turns out to be useless, or even erroneous, and thus becomes an obstacle to further development of mathematical knowledge and pupils' skills. The text presents the results of a three-year project, The development of a culture of solving mathematical problems in Czech schools (Czech Science Foundation project P407/12/1939) focusing on the use of heuristic strategies in problem solving. Heuristic strategies have been used in Polya's and Schoenfeld's understanding of the concept. The theoretical background of the research was Brousseau's Theory of Didactical Situations. The use of heuristic strategies will be explored from two different perspec- tives: how heuristic strategies develop pupils' understanding of mathematics through using them, and how teachers change in consequence to giving their pupils the chance to use these strategies.
Název v anglickém jazyce
The effects of heuristic strategies on solving of problems in mathematics
Popis výsledku anglicky
It is a universally accepted truth that problem solving forms the basis for successful mathematics education. Problem solving is an indicator of the state of comprehension of the concepts that pupils are taught. They help their solvers realize what former knowledge is applicable in a new situation, what role this knowledge plays in it, and which piece of knowledge turns out to be useless, or even erroneous, and thus becomes an obstacle to further development of mathematical knowledge and pupils' skills. The text presents the results of a three-year project, The development of a culture of solving mathematical problems in Czech schools (Czech Science Foundation project P407/12/1939) focusing on the use of heuristic strategies in problem solving. Heuristic strategies have been used in Polya's and Schoenfeld's understanding of the concept. The theoretical background of the research was Brousseau's Theory of Didactical Situations. The use of heuristic strategies will be explored from two different perspec- tives: how heuristic strategies develop pupils' understanding of mathematics through using them, and how teachers change in consequence to giving their pupils the chance to use these strategies.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
50301 - Education, general; including training, pedagogy, didactics [and education systems]
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP407%2F12%2F1939" target="_blank" >GAP407/12/1939: Rozvíjení kultury řešení matematických problémů ve školské praxi</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Mathematical Transgressions 2015
ISBN
978-83-242-3196-6
Počet stran výsledku
26
Strana od-do
179-204
Počet stran knihy
410
Název nakladatele
UNIVERSITAS
Místo vydání
Kraków
Kód UT WoS kapitoly
—