Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Review of current approaches to spatially explicit urban vulnerability assessments: hazard complexity, data sources, and cartographic representations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F20%3A43895699" target="_blank" >RIV/44555601:13440/20:43895699 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/44555601:13520/20:43895699

  • Výsledek na webu

    <a href="https://content.sciendo.com/view/journals/geosc/14/1/article-p47.xml" target="_blank" >https://content.sciendo.com/view/journals/geosc/14/1/article-p47.xml</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2478/geosc-2020-0005" target="_blank" >10.2478/geosc-2020-0005</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Review of current approaches to spatially explicit urban vulnerability assessments: hazard complexity, data sources, and cartographic representations

  • Popis výsledku v původním jazyce

    Socio-ecological hazards are processes that MINUS SIGN depending on the vulnerability of societal systems MINUS SIGN may have profound adverse impacts. For this reason, the current discourse in disaster risk reduction (DRR) has been experiencing a shift toward a vulnerability-led paradigm, raising new questions about how to address (i) the complexity of vulnerabilities to multiple hazards, (ii) their cultural, dynamic, and subjective character, and (iii) the effectiveness and legitimacy of vulnerability assessments as decision-support tools. In this paper, we present a review of 707 vulnerability studies (derived from the Clarivate WoS database; 1988MINUS SIGN 2018) with a particular focus on urban settings and spatially explicit assessments in order to evaluate current efforts to meet the aforementioned issues. The reviewed studies assessed vulnerabilities to 35 hazard types that were predominantly (n=603, 85%) analysed as single hazards (mostly seismic, flood, and groundwater contamination hazards, as well as climate change), whereas only 15% (n=104) of studies focused on multiple hazards (mostly atmospheric hazards). Within the spatially explicit vulnerability studies, almost 60% used data collected by the study itself (mostly seismic hazards), while statistical and combined data were both employed in 20% of cases (mostly floods, climate change, and social and political hazards). Statistical data were found to have only limited transferability, often being generalised to be applicable in small-scale studies, while reducing the role of cultural and contextual factors. Field research data provided high-resolution information, but their acquisition is time-consuming, and therefore fixed at a local scale and single temporal stage. Underlying hazard types and suitable data sources resulting in other differences found a preference towards the specific coverage and resolution of vulnerability maps that appeared in 44% of all reviewed studies. Altogether, the differences we found indicated a division of spatially explicit vulnerability research in two major directions: (i) geological and geomorphological studies focusing on physical vulnerability, using their own data surveys at a detailed scale and lacking links to other hazards, and (ii) other studies (mostly atmospheric hazards and socialpolitical hazards) focusing on social or combined vulnerabilities, using primarily statistical or combined data at a municipal, regional, and country scale with occasional efforts to integrate multiple hazards. Finally, although cartographic representations have become a frequent component of vulnerability studies, our review found only vague rationalisations for the presentation of maps, and a lack of guidelines for the interpretation of uncertainties and the use of maps as decision-support tools.

  • Název v anglickém jazyce

    Review of current approaches to spatially explicit urban vulnerability assessments: hazard complexity, data sources, and cartographic representations

  • Popis výsledku anglicky

    Socio-ecological hazards are processes that MINUS SIGN depending on the vulnerability of societal systems MINUS SIGN may have profound adverse impacts. For this reason, the current discourse in disaster risk reduction (DRR) has been experiencing a shift toward a vulnerability-led paradigm, raising new questions about how to address (i) the complexity of vulnerabilities to multiple hazards, (ii) their cultural, dynamic, and subjective character, and (iii) the effectiveness and legitimacy of vulnerability assessments as decision-support tools. In this paper, we present a review of 707 vulnerability studies (derived from the Clarivate WoS database; 1988MINUS SIGN 2018) with a particular focus on urban settings and spatially explicit assessments in order to evaluate current efforts to meet the aforementioned issues. The reviewed studies assessed vulnerabilities to 35 hazard types that were predominantly (n=603, 85%) analysed as single hazards (mostly seismic, flood, and groundwater contamination hazards, as well as climate change), whereas only 15% (n=104) of studies focused on multiple hazards (mostly atmospheric hazards). Within the spatially explicit vulnerability studies, almost 60% used data collected by the study itself (mostly seismic hazards), while statistical and combined data were both employed in 20% of cases (mostly floods, climate change, and social and political hazards). Statistical data were found to have only limited transferability, often being generalised to be applicable in small-scale studies, while reducing the role of cultural and contextual factors. Field research data provided high-resolution information, but their acquisition is time-consuming, and therefore fixed at a local scale and single temporal stage. Underlying hazard types and suitable data sources resulting in other differences found a preference towards the specific coverage and resolution of vulnerability maps that appeared in 44% of all reviewed studies. Altogether, the differences we found indicated a division of spatially explicit vulnerability research in two major directions: (i) geological and geomorphological studies focusing on physical vulnerability, using their own data surveys at a detailed scale and lacking links to other hazards, and (ii) other studies (mostly atmospheric hazards and socialpolitical hazards) focusing on social or combined vulnerabilities, using primarily statistical or combined data at a municipal, regional, and country scale with occasional efforts to integrate multiple hazards. Finally, although cartographic representations have become a frequent component of vulnerability studies, our review found only vague rationalisations for the presentation of maps, and a lack of guidelines for the interpretation of uncertainties and the use of maps as decision-support tools.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    50704 - Environmental sciences (social aspects)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF17_048%2F0007435" target="_blank" >EF17_048/0007435: Smart City - Smart Region - Smart Community</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    GeoScape

  • ISSN

    1802-1115

  • e-ISSN

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    15

  • Strana od-do

    47-61

  • Kód UT WoS článku

    000546451300005

  • EID výsledku v databázi Scopus

    2-s2.0-85090268321