Nanostructured manganese oxides as highly active catalysts for enhanced hydrolysis of bis(4-nitrophenyl)phosphate and catalytic decomposition of methanol
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F21%3A43895834" target="_blank" >RIV/44555601:13440/21:43895834 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/44555601:13520/21:43895834
Výsledek na webu
<a href="https://pubs.rsc.org/en/content/articlelanding/2021/cy/d0cy02112a#!divAbstract" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2021/cy/d0cy02112a#!divAbstract</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/D0CY02112A" target="_blank" >10.1039/D0CY02112A</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nanostructured manganese oxides as highly active catalysts for enhanced hydrolysis of bis(4-nitrophenyl)phosphate and catalytic decomposition of methanol
Popis výsledku v původním jazyce
Manganese oxide-based (MnOx) catalysts have received increasing attention due to their low cost, low toxicity, and the ability to degrade organic molecules under mild conditions. In this work, several nanostructured MnOx-based catalysts were prepared via redox reactions of manganese compounds in an aqueous solution and alkaline precipitation with aqueous ammonia. A wide arsenal of analytical techniques, including nitrogen physisorption (BJH and BET), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), temperature-programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS), X-ray fluorescence (XRF), and Raman spectroscopy were applied for their characterization. The nanostructured MnOx exhibited high catalytic activity in hydrolysis of phosphate diester-based substrate bis(4-nitrophenyl)phosphate (BNPP) at 328 K. Furthermore, MnOx specimens were also studied in decomposition of methanol to carbon monoxide and hydrogen as a potential alternative fuel. The results show high dependency of the materials catalytic properties on the synthesis method. It was found that the varying fractions of redox-active Mn2+/Mn3+/Mn4+ surface sites and the high proportion of oxygen species (such as O2MINUS SIGN or OMINUS SIGN ) together with the particle dispersion and morphology are important for high catalytic activity of MnOx in both investigated catalytic reactions. Based on the experimental data, possible mechanisms of BNPP hydrolysis and methanol decomposition were proposed and discussed in detail.
Název v anglickém jazyce
Nanostructured manganese oxides as highly active catalysts for enhanced hydrolysis of bis(4-nitrophenyl)phosphate and catalytic decomposition of methanol
Popis výsledku anglicky
Manganese oxide-based (MnOx) catalysts have received increasing attention due to their low cost, low toxicity, and the ability to degrade organic molecules under mild conditions. In this work, several nanostructured MnOx-based catalysts were prepared via redox reactions of manganese compounds in an aqueous solution and alkaline precipitation with aqueous ammonia. A wide arsenal of analytical techniques, including nitrogen physisorption (BJH and BET), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), temperature-programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS), X-ray fluorescence (XRF), and Raman spectroscopy were applied for their characterization. The nanostructured MnOx exhibited high catalytic activity in hydrolysis of phosphate diester-based substrate bis(4-nitrophenyl)phosphate (BNPP) at 328 K. Furthermore, MnOx specimens were also studied in decomposition of methanol to carbon monoxide and hydrogen as a potential alternative fuel. The results show high dependency of the materials catalytic properties on the synthesis method. It was found that the varying fractions of redox-active Mn2+/Mn3+/Mn4+ surface sites and the high proportion of oxygen species (such as O2MINUS SIGN or OMINUS SIGN ) together with the particle dispersion and morphology are important for high catalytic activity of MnOx in both investigated catalytic reactions. Based on the experimental data, possible mechanisms of BNPP hydrolysis and methanol decomposition were proposed and discussed in detail.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018124" target="_blank" >LM2018124: Nanomateriály a nanotechnologie pro ochranu životního prostředí a udržitelnou budoucnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Catalysis Science & Technology
ISSN
2044-4761
e-ISSN
—
Svazek periodika
2021
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
1766-1779
Kód UT WoS článku
000629000400010
EID výsledku v databázi Scopus
2-s2.0-85103068105