Structure of aqueous alkali metal halide electrolyte solutions from molecular simulations of phase-transferable polarizable models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F23%3A43897990" target="_blank" >RIV/44555601:13440/23:43897990 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0167732223026041?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167732223026041?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.molliq.2023.123797" target="_blank" >10.1016/j.molliq.2023.123797</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Structure of aqueous alkali metal halide electrolyte solutions from molecular simulations of phase-transferable polarizable models
Popis výsledku v původním jazyce
The structure of aqueous solutions of alkali metal halides is studied under ambient thermodynamic conditionsand concentrations from infinite dilution to supersaturation using molecular dynamics simulations of phasetransferablepolarizable models. The results of the solution densities, radial distribution functions, 3D spatialdistribution functions, the properties of hydrogen and other noncovalent bonds in solutions, hydration numbers,coordination numbers, numbers of contact cation-anion pairs, and other statistics of the number of ions hydratedsimultaneously by a shared water molecule are systematically presented. In particular, the results show andquantify how the strengths of the hydration bonds of different ions vary and how the hydration numbers decreasewith increasing concentration in parallel with an increase in the number of contact cation-anion pairs. In mostcases, they completely compensate for the loss of water-ion bonds by an increase in cation-anion bonds. Anexception are solutions based on the Li+ cation, which retain a solid hydration shell even at high concentrations.This behavior is conceptualized on the basis of three imaginary driving forces: the first dominating at lowconcentrations and causing full hydration of the ions, the second representing a lack of water necessary for fullhydration of the ions and increasing with increasing concentration, and the third attracting counterions to thewater-unoccupied sites of the hydration shells and also increasing with concentration. This concept can be usednot only to understand the structural behavior of homogeneous electrolytes in thermodynamic equilibrium butalso to study phenomena that involve preferential adsorption of ions on electrodes, in nanochannels, or porousmaterials. The data obtained for the number and strength of hydration bonds and ion pairs can also be used infurther studies to elucidate the diffusion behavior, viscosity, and conductivity of aqueous electrolyte solutions.
Název v anglickém jazyce
Structure of aqueous alkali metal halide electrolyte solutions from molecular simulations of phase-transferable polarizable models
Popis výsledku anglicky
The structure of aqueous solutions of alkali metal halides is studied under ambient thermodynamic conditionsand concentrations from infinite dilution to supersaturation using molecular dynamics simulations of phasetransferablepolarizable models. The results of the solution densities, radial distribution functions, 3D spatialdistribution functions, the properties of hydrogen and other noncovalent bonds in solutions, hydration numbers,coordination numbers, numbers of contact cation-anion pairs, and other statistics of the number of ions hydratedsimultaneously by a shared water molecule are systematically presented. In particular, the results show andquantify how the strengths of the hydration bonds of different ions vary and how the hydration numbers decreasewith increasing concentration in parallel with an increase in the number of contact cation-anion pairs. In mostcases, they completely compensate for the loss of water-ion bonds by an increase in cation-anion bonds. Anexception are solutions based on the Li+ cation, which retain a solid hydration shell even at high concentrations.This behavior is conceptualized on the basis of three imaginary driving forces: the first dominating at lowconcentrations and causing full hydration of the ions, the second representing a lack of water necessary for fullhydration of the ions and increasing with increasing concentration, and the third attracting counterions to thewater-unoccupied sites of the hydration shells and also increasing with concentration. This concept can be usednot only to understand the structural behavior of homogeneous electrolytes in thermodynamic equilibrium butalso to study phenomena that involve preferential adsorption of ions on electrodes, in nanochannels, or porousmaterials. The data obtained for the number and strength of hydration bonds and ion pairs can also be used infurther studies to elucidate the diffusion behavior, viscosity, and conductivity of aqueous electrolyte solutions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-03380S" target="_blank" >GA22-03380S: Vodné směsi se solemi při extrémních podmínkách - přesné experimenty, molekulární simulace a modelování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Molecular Liquids
ISSN
0167-7322
e-ISSN
—
Svazek periodika
2023
Číslo periodika v rámci svazku
394
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
"nestrankovano"
Kód UT WoS článku
001141348800001
EID výsledku v databázi Scopus
—