The Modification of the K-means Method for Creating Non-convex Clusters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13510%2F14%3A43886630" target="_blank" >RIV/44555601:13510/14:43886630 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Modification of the K-means Method for Creating Non-convex Clusters
Popis výsledku v původním jazyce
Cluster analysis involves many different methods based on a variety of principles. Each of these methods has its advantages and disadvantages. The aim of authors of the new algorithms is to search for new methods that use existing methods positives and minimize the negatives. In this article, we discuss one of the most famous and most used method, the k-means method. The inability to search non-convex clusters is one of known weak points of the k-means method. Nevertheless, this method has many advantages such as simplicity and speed. This algorithm is also implemented in a lot of statistical software. The article presents a proposal for a solution. The second phase of the process is proposed. We create a certain number of clusters which is larger thandesired in the first stage of processing by the classical algorithm k-means. Then we combine some clusters using appropriate agglomerative methods and reduce the number of clusters required in the second phase. There is the proposed proc
Název v anglickém jazyce
The Modification of the K-means Method for Creating Non-convex Clusters
Popis výsledku anglicky
Cluster analysis involves many different methods based on a variety of principles. Each of these methods has its advantages and disadvantages. The aim of authors of the new algorithms is to search for new methods that use existing methods positives and minimize the negatives. In this article, we discuss one of the most famous and most used method, the k-means method. The inability to search non-convex clusters is one of known weak points of the k-means method. Nevertheless, this method has many advantages such as simplicity and speed. This algorithm is also implemented in a lot of statistical software. The article presents a proposal for a solution. The second phase of the process is proposed. We create a certain number of clusters which is larger thandesired in the first stage of processing by the classical algorithm k-means. Then we combine some clusters using appropriate agglomerative methods and reduce the number of clusters required in the second phase. There is the proposed proc
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
8th International Days of Statistics and Economics
ISBN
978-80-87990-02-5
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
1722-1730
Název nakladatele
Melandrium
Místo vydání
Slaný
Místo konání akce
Praha
Datum konání akce
11. 9. 2014
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000350226700169