Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Common flaws in the analysis of river sediments polluted by risk elements and how to avoid them: case study in the Plounice River system, Czech Republic

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13520%2F19%3A43894856" target="_blank" >RIV/44555601:13520/19:43894856 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/content/pdf/10.1007%2Fs11368-018-2215-9.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2Fs11368-018-2215-9.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11368-018-2215-9" target="_blank" >10.1007/s11368-018-2215-9</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Common flaws in the analysis of river sediments polluted by risk elements and how to avoid them: case study in the Plounice River system, Czech Republic

  • Popis výsledku v původním jazyce

    River channel sediments have been widely used to trace current and historical pollution in fluvial systems, although they are not the only media employed for that purpose. The current practice in such use of sediments from sampling strategy, sample pretreatment and geochemical data processing frequently includes unsubstantiated and redundant steps (e.g., sieving by sub-millimetre meshes) and neglects certain relevant aspects (insufficient attention to what is actually sampled). The aim of this work was to improve that state and to remove redundant steps that make research more time-consuming and potentially introduce biases. The work presents data obtained in the identification of pollution sources in a small catchment with three tributaries (the Ploučnice River, the Czech Republic). The sediments were manually sampled in river channels in sites of recent accumulation of fine solids transported by the river. The samples were pulverised and analysed by X-ray fluorescence spectroscopy. The sediments are composed mostly of silt and sand with most chemical elements, including risk elements diluted by quartz and detritic organic matter, which are perfectly suited for geochemical normalization to correctly process compositional data. We avoided statistical tools based on Gaussian distribution, such as means and standard deviations, and instead used median-based statistics better fitting the known properties of geochemical datasets. Sediment sieving to sub-millimetre-size fractions was replaced by geochemical normalization best with Fe and possibly with Rb and Ti, with Al showing implausible performance. The normalization produces grain-size invariant compositional data. The performance of geochemical normalization and downstream variations of risk element concentrations (Pb and Zn) were tested by median-based criteria. Median smoothing of normalized risk element concentrations produced easily interpretable downstream variations of the pollution extent that were independent of grain-size effects and were robust towards the occasional presence of outliers. Channel sediments are suitable for fluvial pollution monitoring if biased routines are avoided. The paper can inspire specialists who plan to perform environmental monitoring and desire to simplify their work and produce robust and unbiased estimates of pollution sources in fluvial systems under anthropogenic pressure. A similar approach could be tested for monitoring of pollution by further elements and hydrophobic organic compounds, except for the need to choose another normalizing element or TOC.

  • Název v anglickém jazyce

    Common flaws in the analysis of river sediments polluted by risk elements and how to avoid them: case study in the Plounice River system, Czech Republic

  • Popis výsledku anglicky

    River channel sediments have been widely used to trace current and historical pollution in fluvial systems, although they are not the only media employed for that purpose. The current practice in such use of sediments from sampling strategy, sample pretreatment and geochemical data processing frequently includes unsubstantiated and redundant steps (e.g., sieving by sub-millimetre meshes) and neglects certain relevant aspects (insufficient attention to what is actually sampled). The aim of this work was to improve that state and to remove redundant steps that make research more time-consuming and potentially introduce biases. The work presents data obtained in the identification of pollution sources in a small catchment with three tributaries (the Ploučnice River, the Czech Republic). The sediments were manually sampled in river channels in sites of recent accumulation of fine solids transported by the river. The samples were pulverised and analysed by X-ray fluorescence spectroscopy. The sediments are composed mostly of silt and sand with most chemical elements, including risk elements diluted by quartz and detritic organic matter, which are perfectly suited for geochemical normalization to correctly process compositional data. We avoided statistical tools based on Gaussian distribution, such as means and standard deviations, and instead used median-based statistics better fitting the known properties of geochemical datasets. Sediment sieving to sub-millimetre-size fractions was replaced by geochemical normalization best with Fe and possibly with Rb and Ti, with Al showing implausible performance. The normalization produces grain-size invariant compositional data. The performance of geochemical normalization and downstream variations of risk element concentrations (Pb and Zn) were tested by median-based criteria. Median smoothing of normalized risk element concentrations produced easily interpretable downstream variations of the pollution extent that were independent of grain-size effects and were robust towards the occasional presence of outliers. Channel sediments are suitable for fluvial pollution monitoring if biased routines are avoided. The paper can inspire specialists who plan to perform environmental monitoring and desire to simplify their work and produce robust and unbiased estimates of pollution sources in fluvial systems under anthropogenic pressure. A similar approach could be tested for monitoring of pollution by further elements and hydrophobic organic compounds, except for the need to choose another normalizing element or TOC.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10511 - Environmental sciences (social aspects to be 5.7)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA15-00340S" target="_blank" >GA15-00340S: Antropogenní znečištění a stavba říčních niv: dva fenomény a jediný příběh</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Soils and Sediments

  • ISSN

    1439-0108

  • e-ISSN

  • Svazek periodika

    19

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    14

  • Strana od-do

    2020-2033

  • Kód UT WoS článku

    000462500000037

  • EID výsledku v databázi Scopus

    2-s2.0-85058801410