Deep learning approaches for delineating wetlands on historical topographic maps
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13520%2F24%3A43898937" target="_blank" >RIV/44555601:13520/24:43898937 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21110/24:00376357
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1111/tgis.13193?af=R" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1111/tgis.13193?af=R</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/tgis.13193" target="_blank" >10.1111/tgis.13193</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep learning approaches for delineating wetlands on historical topographic maps
Popis výsledku v původním jazyce
Historical topographic maps are an important source of a visual record of the landscape, showing geographical elements such as terrain, elevation, rivers and water bodies, roads, buildings, and land use and land cover (LULC). Historical maps are scanned to their digital representation, a raster image. To quantify different classes of LULC, it is necessary to transform scanned maps to their vector equivalent. Traditionally, this has been done either manually, or by using (semi)automatic methods of clustering/segmentation. With the advent of deep neural networks, new horizons opened for more effective and accurate processing. This article attempts to use different deep-learning approaches to detect and segment wetlands on historical Topographic Maps 1: 10000 (TM10), created during the 50s and 60s. Due to the specific symbology of wetlands, their processing can be challenging. It deals with two distinct approaches in the deep learning world, semantic segmentation and object detection, represented by the U-Net and Single-Shot Detector (SSD) neural networks, respectively. The suitability, speed, and accuracy of the two approaches in neural networks are analyzed. The results aresatisfactory, with the U-Net F1 score reaching 75.7% and the SSD object detection approach presenting an unconventional alternative
Název v anglickém jazyce
Deep learning approaches for delineating wetlands on historical topographic maps
Popis výsledku anglicky
Historical topographic maps are an important source of a visual record of the landscape, showing geographical elements such as terrain, elevation, rivers and water bodies, roads, buildings, and land use and land cover (LULC). Historical maps are scanned to their digital representation, a raster image. To quantify different classes of LULC, it is necessary to transform scanned maps to their vector equivalent. Traditionally, this has been done either manually, or by using (semi)automatic methods of clustering/segmentation. With the advent of deep neural networks, new horizons opened for more effective and accurate processing. This article attempts to use different deep-learning approaches to detect and segment wetlands on historical Topographic Maps 1: 10000 (TM10), created during the 50s and 60s. Due to the specific symbology of wetlands, their processing can be challenging. It deals with two distinct approaches in the deep learning world, semantic segmentation and object detection, represented by the U-Net and Single-Shot Detector (SSD) neural networks, respectively. The suitability, speed, and accuracy of the two approaches in neural networks are analyzed. The results aresatisfactory, with the U-Net F1 score reaching 75.7% and the SSD object detection approach presenting an unconventional alternative
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20705 - Remote sensing
Návaznosti výsledku
Projekt
<a href="/cs/project/SS05010090" target="_blank" >SS05010090: Voda v krajině Českého Švýcarska</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Transaction in GIS
ISSN
1361-1682
e-ISSN
1467-9671
Svazek periodika
2024
Číslo periodika v rámci svazku
28
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
1400-1411
Kód UT WoS článku
001240738200001
EID výsledku v databázi Scopus
2-s2.0-85195455583