Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Safety assessment of Czech motorways and national roads

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44994575%3A_____%2F19%3AN0000074" target="_blank" >RIV/44994575:_____/19:N0000074 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://etrr.springeropen.com/articles/10.1186/s12544-018-0328-2" target="_blank" >https://etrr.springeropen.com/articles/10.1186/s12544-018-0328-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1186/s12544-018-0328-2" target="_blank" >10.1186/s12544-018-0328-2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Safety assessment of Czech motorways and national roads

  • Popis výsledku v původním jazyce

    Purpose: Czech motorways and national roads form the primary road network, which is critical in terms of safety. To be able to rationally manage network safety in both planning and operation stages, quality network-wide data and tools are needed. While such tools already exist in some countries, their transferability is limited. Authors therefore collected data and used it to develop tools, which allowed conducting state-of-the-art road safety impact assessment and network safety ranking in the Czech conditions. In addition to primary road network, focus was widened to include also secondary roads, in order to enable assessment of impacts on adjacent road network. Methods: Accident, road and traffic data was collected, using not only existing databases, but also including own collection of traffic volumes on motorway interchanges. Data was used to develop the tools, based on accident prediction models and accident modification factors. Results: The final accident prediction models and accident modification factors enabled conducting road safety impact assessment, for which simple on-line tool was also developed. For network safety ranking, accident prediction models were applied according to the Empirical Bayes method, in order to determine potential for safety improvement of the studied road network elements, with the final priority list visualized in an on-line map. Both outputs are shortly presented in the paper. Conclusions: Data and sample size limitations lead to some compromises in modelling, such as using fixed proportions of observed accident severities or omitted variables. Nevertheless, the study established the practical framework for both road safety impact assessment and network safety ranking. It may serve as an example for other member countries, which also lack their local tools. Follow-up studies may focus on future model updating and improvements, as well as development of local accident modification factors.

  • Název v anglickém jazyce

    Safety assessment of Czech motorways and national roads

  • Popis výsledku anglicky

    Purpose: Czech motorways and national roads form the primary road network, which is critical in terms of safety. To be able to rationally manage network safety in both planning and operation stages, quality network-wide data and tools are needed. While such tools already exist in some countries, their transferability is limited. Authors therefore collected data and used it to develop tools, which allowed conducting state-of-the-art road safety impact assessment and network safety ranking in the Czech conditions. In addition to primary road network, focus was widened to include also secondary roads, in order to enable assessment of impacts on adjacent road network. Methods: Accident, road and traffic data was collected, using not only existing databases, but also including own collection of traffic volumes on motorway interchanges. Data was used to develop the tools, based on accident prediction models and accident modification factors. Results: The final accident prediction models and accident modification factors enabled conducting road safety impact assessment, for which simple on-line tool was also developed. For network safety ranking, accident prediction models were applied according to the Empirical Bayes method, in order to determine potential for safety improvement of the studied road network elements, with the final priority list visualized in an on-line map. Both outputs are shortly presented in the paper. Conclusions: Data and sample size limitations lead to some compromises in modelling, such as using fixed proportions of observed accident severities or omitted variables. Nevertheless, the study established the practical framework for both road safety impact assessment and network safety ranking. It may serve as an example for other member countries, which also lack their local tools. Follow-up studies may focus on future model updating and improvements, as well as development of local accident modification factors.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20104 - Transport engineering

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    European Transport Research Review

  • ISSN

    1866-8887

  • e-ISSN

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    16

  • Strana od-do

    1-15

  • Kód UT WoS článku

    000454944800002

  • EID výsledku v databázi Scopus

    2-s2.0-85059677391