VVER-1000 fuel cycles analysis with different burnable absorbers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46356088%3A_____%2F19%3AN0000012" target="_blank" >RIV/46356088:_____/19:N0000012 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0029549319301384" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0029549319301384</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.nucengdes.2019.05.026" target="_blank" >10.1016/j.nucengdes.2019.05.026</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
VVER-1000 fuel cycles analysis with different burnable absorbers
Popis výsledku v původním jazyce
The increase of fuel cycle efficiency is crucial for all reactor operators. Burnable absorbers can compensate excess reactivity at the beginning of the cycle. They also stabilize the power distribution. The commonly used burnable absorbers are in form of Gd2O3 and IFBA in LWR. Also interest in Er2O3 has been rising during recent years. New strategies of operation with focus on very long cycles or new projects like Small Modular Reactors are moving development towards reactor cores that have to allow achieving self sustainable chain reaction for much longer. This shift to the very long operation increases demand for new types of burnable absorbers. Burnable absorbers covered in this study are gadolinium, erbium, cadmium, indium, iridium, and lithium. These materials were tested via physics model of VVER-1000 reactor. Fuel characteristics were calculated at the lattice level of an individual fuel assembly. Secondly, the full core characteristic were evaluated.
Název v anglickém jazyce
VVER-1000 fuel cycles analysis with different burnable absorbers
Popis výsledku anglicky
The increase of fuel cycle efficiency is crucial for all reactor operators. Burnable absorbers can compensate excess reactivity at the beginning of the cycle. They also stabilize the power distribution. The commonly used burnable absorbers are in form of Gd2O3 and IFBA in LWR. Also interest in Er2O3 has been rising during recent years. New strategies of operation with focus on very long cycles or new projects like Small Modular Reactors are moving development towards reactor cores that have to allow achieving self sustainable chain reaction for much longer. This shift to the very long operation increases demand for new types of burnable absorbers. Burnable absorbers covered in this study are gadolinium, erbium, cadmium, indium, iridium, and lithium. These materials were tested via physics model of VVER-1000 reactor. Fuel characteristics were calculated at the lattice level of an individual fuel assembly. Secondly, the full core characteristic were evaluated.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20305 - Nuclear related engineering; (nuclear physics to be 1.3);
Návaznosti výsledku
Projekt
<a href="/cs/project/TE01020455" target="_blank" >TE01020455: Centrum pokročilých jaderných technologií (CANUT)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nuclear Engineering and Design
ISSN
0029-5493
e-ISSN
1872-759X
Svazek periodika
351
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
8
Strana od-do
167-174
Kód UT WoS článku
000475396200015
EID výsledku v databázi Scopus
2-s2.0-85066809082