Burnable absorber layer in HTR coated particles for OTTO fuel cycle
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F18%3A43953837" target="_blank" >RIV/49777513:23220/18:43953837 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Burnable absorber layer in HTR coated particles for OTTO fuel cycle
Popis výsledku v původním jazyce
High temperature reactor is loaded by fuel pebbles that slowly flow through the reactor core. Reactor operation is described by a continuous on-power refueling with two possible fuel cycles. Multi-pass scheme allows lower peak power density. Moreover, multiple passing through the core shifts power peak into central parts of the core. On the other hand, multi-pass scheme requires complicated refueling machine. Single-passing scheme known as OTTO cycle (Once-Through-Then-Out) avoids refueling machine with the disadvantage of high peak power density located at the top of the core. There are few paths for diminishing and shifting of the power peak - non-cylindrical core shapes, absorbing reflectors, thorium fuel, radial fuel zoning and burnable absorbers. From construction point of view, burnable absorbers are the first choice. In contrast to LWR reactors, HTR reactor is randomly filled by hundred thousand fuel assemblies (pebbles), each fuel pebble contains thousands of coated particles stochastically embedded in the graphite matrix. Because of this double heterogeneity, fuel design studies should be based on both fuel assembly level as well as core level calculations. Standard LWR burnable absorber materials gadolinium, boron and erbium were analyzed for HTR, however, other materials are proposed for specific HTR conditions, mainly very high fuel discharge burnup. Coated layer created by burnable absorber is small, therefore, thermal and chemical compatibility with UO2 matrix is not needed and the choice of optimum material can be more focused on neutronics analysis. Monte Carlo approach with Serpent 2 code is used because of a specific random walk implementation that is distinctively faster than the standard ray tracing methods.
Název v anglickém jazyce
Burnable absorber layer in HTR coated particles for OTTO fuel cycle
Popis výsledku anglicky
High temperature reactor is loaded by fuel pebbles that slowly flow through the reactor core. Reactor operation is described by a continuous on-power refueling with two possible fuel cycles. Multi-pass scheme allows lower peak power density. Moreover, multiple passing through the core shifts power peak into central parts of the core. On the other hand, multi-pass scheme requires complicated refueling machine. Single-passing scheme known as OTTO cycle (Once-Through-Then-Out) avoids refueling machine with the disadvantage of high peak power density located at the top of the core. There are few paths for diminishing and shifting of the power peak - non-cylindrical core shapes, absorbing reflectors, thorium fuel, radial fuel zoning and burnable absorbers. From construction point of view, burnable absorbers are the first choice. In contrast to LWR reactors, HTR reactor is randomly filled by hundred thousand fuel assemblies (pebbles), each fuel pebble contains thousands of coated particles stochastically embedded in the graphite matrix. Because of this double heterogeneity, fuel design studies should be based on both fuel assembly level as well as core level calculations. Standard LWR burnable absorber materials gadolinium, boron and erbium were analyzed for HTR, however, other materials are proposed for specific HTR conditions, mainly very high fuel discharge burnup. Coated layer created by burnable absorber is small, therefore, thermal and chemical compatibility with UO2 matrix is not needed and the choice of optimum material can be more focused on neutronics analysis. Monte Carlo approach with Serpent 2 code is used because of a specific random walk implementation that is distinctively faster than the standard ray tracing methods.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20305 - Nuclear related engineering; (nuclear physics to be 1.3);
Návaznosti výsledku
Projekt
<a href="/cs/project/TE01020455" target="_blank" >TE01020455: Centrum pokročilých jaderných technologií (CANUT)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings : 27th International Conference Nuclear Energy for New Europe (NENE 2018)
ISBN
978-961-6207-45-4
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
8
Strana od-do
"214.1"-"214.8"
Název nakladatele
Nuclear Society of Slovenia
Místo vydání
Ljubljana
Místo konání akce
Portorož, Slovenia
Datum konání akce
10. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—