Status of computational fluid dynamics for in-vessel retention: Challenges and achievements
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46356088%3A_____%2F20%3AN0000045" target="_blank" >RIV/46356088:_____/20:N0000045 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0306454919305067" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0306454919305067</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.anucene.2019.107004" target="_blank" >10.1016/j.anucene.2019.107004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Status of computational fluid dynamics for in-vessel retention: Challenges and achievements
Popis výsledku v původním jazyce
During a severe accident in a nuclear reactor, core damage occurs and may lead to the formation of corium, followed by relocation to the vessel lower head. The decay heat released by the corium can threaten the integrity of the vessel, if no effective cooling mechanism is in place. In-Vessel Retention (IVR) is a severe accident mitigation strategy that has been shown to work for low-to-intermediate power reactors. For high power reactors, many uncertainties still exist. In an attempt to remove some of these uncertainties, the European H2020 IVMR project was launched in 2015. The focus of this project is on obtaining the additional, necessary, experimental data in order to improve on current modelling strategies. One of the modelling strategies investigated is the potential use of CFD codes in assessing the feasibility of IVR for high power reactors. The main focus of the CFD studies is on two important aspects of IVR: the presence of a metallic layer on top of the corium pool and the homogenous corium pool. These aspects are analysed by studying the thermal hydraulic features of a thin metal layer and that of a homogeneous pool. In this paper, first the used codes and numerical approaches are presented. The numerical models are subsequently assessed by comparing numerical results with relevant simulant-based experimental data, resulting, in general, in good agreement. The codes are then used to perform exploratory computations under prototypical conditions. While the behaviours of water and prototypical materials are similar for the oxide pool, significant differences are observed for the metallic layer.
Název v anglickém jazyce
Status of computational fluid dynamics for in-vessel retention: Challenges and achievements
Popis výsledku anglicky
During a severe accident in a nuclear reactor, core damage occurs and may lead to the formation of corium, followed by relocation to the vessel lower head. The decay heat released by the corium can threaten the integrity of the vessel, if no effective cooling mechanism is in place. In-Vessel Retention (IVR) is a severe accident mitigation strategy that has been shown to work for low-to-intermediate power reactors. For high power reactors, many uncertainties still exist. In an attempt to remove some of these uncertainties, the European H2020 IVMR project was launched in 2015. The focus of this project is on obtaining the additional, necessary, experimental data in order to improve on current modelling strategies. One of the modelling strategies investigated is the potential use of CFD codes in assessing the feasibility of IVR for high power reactors. The main focus of the CFD studies is on two important aspects of IVR: the presence of a metallic layer on top of the corium pool and the homogenous corium pool. These aspects are analysed by studying the thermal hydraulic features of a thin metal layer and that of a homogeneous pool. In this paper, first the used codes and numerical approaches are presented. The numerical models are subsequently assessed by comparing numerical results with relevant simulant-based experimental data, resulting, in general, in good agreement. The codes are then used to perform exploratory computations under prototypical conditions. While the behaviours of water and prototypical materials are similar for the oxide pool, significant differences are observed for the metallic layer.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20305 - Nuclear related engineering; (nuclear physics to be 1.3);
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Nuclear Energy
ISSN
0306-4549
e-ISSN
—
Svazek periodika
135
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
000496898500052
EID výsledku v databázi Scopus
2-s2.0-85071371544