Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Status of computational fluid dynamics for in-vessel retention: Challenges and achievements

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46356088%3A_____%2F20%3AN0000045" target="_blank" >RIV/46356088:_____/20:N0000045 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0306454919305067" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0306454919305067</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.anucene.2019.107004" target="_blank" >10.1016/j.anucene.2019.107004</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Status of computational fluid dynamics for in-vessel retention: Challenges and achievements

  • Popis výsledku v původním jazyce

    During a severe accident in a nuclear reactor, core damage occurs and may lead to the formation of corium, followed by relocation to the vessel lower head. The decay heat released by the corium can threaten the integrity of the vessel, if no effective cooling mechanism is in place. In-Vessel Retention (IVR) is a severe accident mitigation strategy that has been shown to work for low-to-intermediate power reactors. For high power reactors, many uncertainties still exist. In an attempt to remove some of these uncertainties, the European H2020 IVMR project was launched in 2015. The focus of this project is on obtaining the additional, necessary, experimental data in order to improve on current modelling strategies. One of the modelling strategies investigated is the potential use of CFD codes in assessing the feasibility of IVR for high power reactors. The main focus of the CFD studies is on two important aspects of IVR: the presence of a metallic layer on top of the corium pool and the homogenous corium pool. These aspects are analysed by studying the thermal hydraulic features of a thin metal layer and that of a homogeneous pool. In this paper, first the used codes and numerical approaches are presented. The numerical models are subsequently assessed by comparing numerical results with relevant simulant-based experimental data, resulting, in general, in good agreement. The codes are then used to perform exploratory computations under prototypical conditions. While the behaviours of water and prototypical materials are similar for the oxide pool, significant differences are observed for the metallic layer.

  • Název v anglickém jazyce

    Status of computational fluid dynamics for in-vessel retention: Challenges and achievements

  • Popis výsledku anglicky

    During a severe accident in a nuclear reactor, core damage occurs and may lead to the formation of corium, followed by relocation to the vessel lower head. The decay heat released by the corium can threaten the integrity of the vessel, if no effective cooling mechanism is in place. In-Vessel Retention (IVR) is a severe accident mitigation strategy that has been shown to work for low-to-intermediate power reactors. For high power reactors, many uncertainties still exist. In an attempt to remove some of these uncertainties, the European H2020 IVMR project was launched in 2015. The focus of this project is on obtaining the additional, necessary, experimental data in order to improve on current modelling strategies. One of the modelling strategies investigated is the potential use of CFD codes in assessing the feasibility of IVR for high power reactors. The main focus of the CFD studies is on two important aspects of IVR: the presence of a metallic layer on top of the corium pool and the homogenous corium pool. These aspects are analysed by studying the thermal hydraulic features of a thin metal layer and that of a homogeneous pool. In this paper, first the used codes and numerical approaches are presented. The numerical models are subsequently assessed by comparing numerical results with relevant simulant-based experimental data, resulting, in general, in good agreement. The codes are then used to perform exploratory computations under prototypical conditions. While the behaviours of water and prototypical materials are similar for the oxide pool, significant differences are observed for the metallic layer.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20305 - Nuclear related engineering; (nuclear physics to be 1.3);

Návaznosti výsledku

  • Projekt

  • Návaznosti

    R - Projekt Ramcoveho programu EK

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Annals of Nuclear Energy

  • ISSN

    0306-4549

  • e-ISSN

  • Svazek periodika

    135

  • Číslo periodika v rámci svazku

    January

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    12

  • Strana od-do

    1-12

  • Kód UT WoS článku

    000496898500052

  • EID výsledku v databázi Scopus

    2-s2.0-85071371544