Localizing Perturbations in Pressurized Water Reactors Using One-Dimensional Deep Convolutional Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46356088%3A_____%2F22%3AN0000013" target="_blank" >RIV/46356088:_____/22:N0000013 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1424-8220/22/1/113" target="_blank" >https://www.mdpi.com/1424-8220/22/1/113</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s22010113" target="_blank" >10.3390/s22010113</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Localizing Perturbations in Pressurized Water Reactors Using One-Dimensional Deep Convolutional Neural Networks
Popis výsledku v původním jazyce
This work outlines an approach for localizing anomalies in nuclear reactor cores during their steady state operation, employing deep, one-dimensional, convolutional neural networks. Anomalies are characterized by the application of perturbation diagnostic techniques, based on the analysis of the so-called "neutron-noise" signals: that is, fluctuations of the neutron flux around the mean value observed in a steady-state power level. The proposed methodology is comprised of three steps: initially, certain reactor core perturbations scenarios are simulated in software, creating the respective perturbation datasets, which are specific to a given reactor geometry; then, the said datasets are used to train deep learning models that learn to identify and locate the given perturbations within the nuclear reactor core; lastly, the models are tested on actual plant measurements. The overall methodology is validated on hexagonal, pre-Konvoi, pressurized water, and VVER-1000 type nuclear reactors. The simulated data are generated by the FEMFFUSION code, which is extended in order to deal with the hexagonal geometry in the time and frequency domains. The examined perturbations are absorbers of variable strength, and the trained models are tested on actual plant data acquired by the in-core detectors of the Temelin VVER-1000 Power Plant in the Czech Republic. The whole approach is realized in the framework of Euratom's CORTEX project.
Název v anglickém jazyce
Localizing Perturbations in Pressurized Water Reactors Using One-Dimensional Deep Convolutional Neural Networks
Popis výsledku anglicky
This work outlines an approach for localizing anomalies in nuclear reactor cores during their steady state operation, employing deep, one-dimensional, convolutional neural networks. Anomalies are characterized by the application of perturbation diagnostic techniques, based on the analysis of the so-called "neutron-noise" signals: that is, fluctuations of the neutron flux around the mean value observed in a steady-state power level. The proposed methodology is comprised of three steps: initially, certain reactor core perturbations scenarios are simulated in software, creating the respective perturbation datasets, which are specific to a given reactor geometry; then, the said datasets are used to train deep learning models that learn to identify and locate the given perturbations within the nuclear reactor core; lastly, the models are tested on actual plant measurements. The overall methodology is validated on hexagonal, pre-Konvoi, pressurized water, and VVER-1000 type nuclear reactors. The simulated data are generated by the FEMFFUSION code, which is extended in order to deal with the hexagonal geometry in the time and frequency domains. The examined perturbations are absorbers of variable strength, and the trained models are tested on actual plant data acquired by the in-core detectors of the Temelin VVER-1000 Power Plant in the Czech Republic. The whole approach is realized in the framework of Euratom's CORTEX project.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20305 - Nuclear related engineering; (nuclear physics to be 1.3);
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sensors
ISSN
1424-8220
e-ISSN
1424-8220
Svazek periodika
22
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
22
Strana od-do
1-22
Kód UT WoS článku
000742450800001
EID výsledku v databázi Scopus
2-s2.0-85121641594