Analytical Approach to Study Sensing Properties of Graphene Based Gas Sensor
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F20%3A00007387" target="_blank" >RIV/46747885:24210/20:00007387 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/46747885:24620/20:00007387
Výsledek na webu
<a href="https://www.mdpi.com/1424-8220/20/5/1506" target="_blank" >https://www.mdpi.com/1424-8220/20/5/1506</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s20051506" target="_blank" >10.3390/s20051506</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analytical Approach to Study Sensing Properties of Graphene Based Gas Sensor
Popis výsledku v původním jazyce
Over the past years, carbon-based materials and especially graphene, have always been known as one of the most famous and popular materials for sensing applications. Graphene poses outstanding electrical and physical properties that make it favorable to be used as a transducer in the gas sensors structure. Graphene experiences remarkable changes in its physical and electrical properties when exposed to various gas molecules. Therefore, in this study, a set of new analytical models are developed to investigate energy band structure, the density of states (DOS), the velocity of charged carriers and I-V characteristics of the graphene after molecular (CO, NO2, H2O) adsorption. The results show that gas adsorption modulates the energy band structure of the graphene that leads to the variation of the energy bandgap, thus the DOS changes. Consequently, graphene converts to semiconducting material, which affects the graphene conductivity and together with the DOS variation, modulate velocity and I-V characteristics of the graphene. These parameters are important factors that can be implemented as sensing parameters and can be used to analyze and develop new sensors based on graphene material.
Název v anglickém jazyce
Analytical Approach to Study Sensing Properties of Graphene Based Gas Sensor
Popis výsledku anglicky
Over the past years, carbon-based materials and especially graphene, have always been known as one of the most famous and popular materials for sensing applications. Graphene poses outstanding electrical and physical properties that make it favorable to be used as a transducer in the gas sensors structure. Graphene experiences remarkable changes in its physical and electrical properties when exposed to various gas molecules. Therefore, in this study, a set of new analytical models are developed to investigate energy band structure, the density of states (DOS), the velocity of charged carriers and I-V characteristics of the graphene after molecular (CO, NO2, H2O) adsorption. The results show that gas adsorption modulates the energy band structure of the graphene that leads to the variation of the energy bandgap, thus the DOS changes. Consequently, graphene converts to semiconducting material, which affects the graphene conductivity and together with the DOS variation, modulate velocity and I-V characteristics of the graphene. These parameters are important factors that can be implemented as sensing parameters and can be used to analyze and develop new sensors based on graphene material.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21100 - Other engineering and technologies
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_025%2F0007293" target="_blank" >EF16_025/0007293: Modulární platforma pro autonomní podvozky specializovaných elektrovozidel pro dopravu nákladu a zařízení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sensors
ISSN
1424-8220
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
000525271500268
EID výsledku v databázi Scopus
2-s2.0-85081134319