Analytical Prediction of Highly Sensitive CNT-FET-Based Sensor Performance for Detection of Gas Molecules
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F20%3A00007884" target="_blank" >RIV/46747885:24210/20:00007884 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/46747885:24620/20:00007884
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8955777" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8955777</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2020.2965806" target="_blank" >10.1109/ACCESS.2020.2965806</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analytical Prediction of Highly Sensitive CNT-FET-Based Sensor Performance for Detection of Gas Molecules
Popis výsledku v původním jazyce
In this study, a set of new analytical models to predict and investigate the impacts of gas adsorption on the electronic band structure and electrical transport properties of the single-wall carbon nanotube field-effect transistor (SWCNT-FET) based gas sensor are proposed. The sensing mechanism is based on introducing new hopping energy and on-site energy parameters for gas-carbon interactions representing the charge transfer between gas molecules (CO2, NH3, and H2O) and the hopping energies between carbon atoms of the CNT and gas molecule. The modeling starts from the atomic level to the device level using the tight-binding technique to formulate molecular adsorption effects on the energy band structure, density of states, carrier velocity, and I-V characteristics. Therefore, the variation of the energy bandgap, density of states and current-voltage properties of the CNT sensor in the presence of the gas molecules is discovered and discussed. The simulated results show that the proposed analytical models can be used with an electrical CNT gas sensor to predict the behavior of sensing mechanisms in gas sensors.
Název v anglickém jazyce
Analytical Prediction of Highly Sensitive CNT-FET-Based Sensor Performance for Detection of Gas Molecules
Popis výsledku anglicky
In this study, a set of new analytical models to predict and investigate the impacts of gas adsorption on the electronic band structure and electrical transport properties of the single-wall carbon nanotube field-effect transistor (SWCNT-FET) based gas sensor are proposed. The sensing mechanism is based on introducing new hopping energy and on-site energy parameters for gas-carbon interactions representing the charge transfer between gas molecules (CO2, NH3, and H2O) and the hopping energies between carbon atoms of the CNT and gas molecule. The modeling starts from the atomic level to the device level using the tight-binding technique to formulate molecular adsorption effects on the energy band structure, density of states, carrier velocity, and I-V characteristics. Therefore, the variation of the energy bandgap, density of states and current-voltage properties of the CNT sensor in the presence of the gas molecules is discovered and discussed. The simulated results show that the proposed analytical models can be used with an electrical CNT gas sensor to predict the behavior of sensing mechanisms in gas sensors.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_025%2F0007293" target="_blank" >EF16_025/0007293: Modulární platforma pro autonomní podvozky specializovaných elektrovozidel pro dopravu nákladu a zařízení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
12655-12661
Kód UT WoS článku
000525409100066
EID výsledku v databázi Scopus
2-s2.0-85078802367