Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Data-Centric Machine Learning Methodology: Application on Predictive Maintenance of Wind Turbines

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F22%3A00009599" target="_blank" >RIV/46747885:24210/22:00009599 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/1996-1073/15/3/826/htm" target="_blank" >https://www.mdpi.com/1996-1073/15/3/826/htm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/en15030826" target="_blank" >10.3390/en15030826</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Data-Centric Machine Learning Methodology: Application on Predictive Maintenance of Wind Turbines

  • Popis výsledku v původním jazyce

    Nowadays, the energy sector is experiencing a profound transition. Among all renewable energy sources, wind energy is the most developed technology across the world. To ensure the profitability of wind turbines, it is essential to develop predictive maintenance strategies that will optimize energy production while preventing unexpected downtimes. With the huge amount of data collected every day, machine learning is seen as a key enabling approach for predictive maintenance of wind turbines. However, most of the effort is put into the optimization of the model architectures and its parameters, whereas data-related aspects are often neglected. The goal of this paper is to contribute to a better understanding of wind turbines through a data-centric machine learning methodology. In particular, we focus on the optimization of data preprocessing and feature selection steps of the machine learning pipeline. The proposed methodology is used to detect failures affecting five components on a wind farm composed of five turbines. Despite the simplicity of the used machine learning model (a decision tree), the methodology outperformed model-centric approach by improving the prediction of the remaining useful life of the wind farm, making it more reliable and contributing to the global efforts towards tackling climate change.

  • Název v anglickém jazyce

    A Data-Centric Machine Learning Methodology: Application on Predictive Maintenance of Wind Turbines

  • Popis výsledku anglicky

    Nowadays, the energy sector is experiencing a profound transition. Among all renewable energy sources, wind energy is the most developed technology across the world. To ensure the profitability of wind turbines, it is essential to develop predictive maintenance strategies that will optimize energy production while preventing unexpected downtimes. With the huge amount of data collected every day, machine learning is seen as a key enabling approach for predictive maintenance of wind turbines. However, most of the effort is put into the optimization of the model architectures and its parameters, whereas data-related aspects are often neglected. The goal of this paper is to contribute to a better understanding of wind turbines through a data-centric machine learning methodology. In particular, we focus on the optimization of data preprocessing and feature selection steps of the machine learning pipeline. The proposed methodology is used to detect failures affecting five components on a wind farm composed of five turbines. Despite the simplicity of the used machine learning model (a decision tree), the methodology outperformed model-centric approach by improving the prediction of the remaining useful life of the wind farm, making it more reliable and contributing to the global efforts towards tackling climate change.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20704 - Energy and fuels

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ENERGIES

  • ISSN

    1996-1073

  • e-ISSN

  • Svazek periodika

    15

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    21

  • Strana od-do

  • Kód UT WoS článku

    000757389800001

  • EID výsledku v databázi Scopus

    2-s2.0-85123612317