The Influence of Plasticizers and Accelerated Ageing on Biodegradation of PLA under Controlled Composting Conditions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F23%3A00010257" target="_blank" >RIV/46747885:24210/23:00010257 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/polym15010140" target="_blank" >https://doi.org/10.3390/polym15010140</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/polym15010140" target="_blank" >10.3390/polym15010140</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Influence of Plasticizers and Accelerated Ageing on Biodegradation of PLA under Controlled Composting Conditions
Popis výsledku v původním jazyce
The overall performance of plasticizers on common mechanical and physical properties, as well as on the processability of polylactic acid (PLA) films, is well-explored. However, the influence of plasticizers on biodegradation is still in its infancy. In this study, the influence of natural-based dicarboxylic acid-based ester plasticizers (MC2178 and MC2192), acetyl tributyl citrate (ATBC Citroflex A4), and polyethylene glycol (PEG 400) on the biodegradation of extruded PLA films was evaluated. Furthermore, the influence of accelerated ageing on the performance properties and biodegradation of films was further investigated. The biodegradation of films was determined under controlled thermophilic composting conditions (ISO 14855-1). Apart from respirometry, an evaluation of the degree of disintegration, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) of film surfaces was conducted. The influence of melt-processing with plasticizers has a significant effect on structural changes. Especially, the degree of crystallinity has been found to be a major factor which affects the biodegradation rate. The lowest biodegradation rates have been evaluated for films plasticized with PEG 400. These lower molecular weight plasticizers enhanced the crystallinity degrees of the PLA phase due to an increase in chain mobility. On the contrary, the highest biodegradation rate was found for films plasticized with MC2192, which has a higher molecular weight and evoked minimal structural changes of the PLA. From the evaluated results, it could also be stated that migration of plasticizers, physical ageing, and chain scission of films prompted by ageing significantly influenced both the mechanical and thermal properties, as well as the biodegradation rate. Therefore, the ageing of parts has to be taken into consideration for the proper evolution of the biodegradation of plasticized PLA and their applications.
Název v anglickém jazyce
The Influence of Plasticizers and Accelerated Ageing on Biodegradation of PLA under Controlled Composting Conditions
Popis výsledku anglicky
The overall performance of plasticizers on common mechanical and physical properties, as well as on the processability of polylactic acid (PLA) films, is well-explored. However, the influence of plasticizers on biodegradation is still in its infancy. In this study, the influence of natural-based dicarboxylic acid-based ester plasticizers (MC2178 and MC2192), acetyl tributyl citrate (ATBC Citroflex A4), and polyethylene glycol (PEG 400) on the biodegradation of extruded PLA films was evaluated. Furthermore, the influence of accelerated ageing on the performance properties and biodegradation of films was further investigated. The biodegradation of films was determined under controlled thermophilic composting conditions (ISO 14855-1). Apart from respirometry, an evaluation of the degree of disintegration, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) of film surfaces was conducted. The influence of melt-processing with plasticizers has a significant effect on structural changes. Especially, the degree of crystallinity has been found to be a major factor which affects the biodegradation rate. The lowest biodegradation rates have been evaluated for films plasticized with PEG 400. These lower molecular weight plasticizers enhanced the crystallinity degrees of the PLA phase due to an increase in chain mobility. On the contrary, the highest biodegradation rate was found for films plasticized with MC2192, which has a higher molecular weight and evoked minimal structural changes of the PLA. From the evaluated results, it could also be stated that migration of plasticizers, physical ageing, and chain scission of films prompted by ageing significantly influenced both the mechanical and thermal properties, as well as the biodegradation rate. Therefore, the ageing of parts has to be taken into consideration for the proper evolution of the biodegradation of plasticized PLA and their applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000843" target="_blank" >EF16_019/0000843: Hybridní materiály pro hierarchické struktury</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Polymers
ISSN
2073-4360
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
31
Strana od-do
—
Kód UT WoS článku
000909659100001
EID výsledku v databázi Scopus
2-s2.0-85146048750