Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Stress Relaxation Behavior of Isotropic And Anisotropic Magnetorheological Elastomers

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F24%3A00009731" target="_blank" >RIV/46747885:24210/24:00009731 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s00161-022-01097-5" target="_blank" >https://link.springer.com/article/10.1007/s00161-022-01097-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00161-022-01097-5" target="_blank" >10.1007/s00161-022-01097-5</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Stress Relaxation Behavior of Isotropic And Anisotropic Magnetorheological Elastomers

  • Popis výsledku v původním jazyce

    The paper presents an experimental study and numerical simulation of stress relaxation behavior of isotropic and anisotropic magnetorheological elastomers (MREs) made from silicone rubber filled with micro-sized carbonyl iron powder. Effects of applied constant strains and magnetic fields of an electromagnet on the stress relaxation of the MREs were investigated for 10 h using the single relaxation test with double-lap shear samples. The isotropic MRE showed a linearly elastic behavior, while the anisotropic MRE indicated a highly nonlinear elastic response. The shear stress and relaxation modulus of anisotropic MRE are much higher than those of isotropic MRE. The shear stress of the MREs increased with increasing the constant strain, while their relaxation modulus decreased. The shear stress and relaxation modulus of the MREs within the first 0.25 h boosted with raising the magnetic flux density to about 0.5 T. However, the shear stress and relaxation modulus of the MREs under strong magnetic fields declined considerably after 0.25 h testing. This reduction was attributed to the temperature rise in the MRE samples caused by the heating of the electromagnet. The stress relaxation behavior of the MREs was examined using a four-parameter fractional derivative model. The model parameters were obtained by fitting the relaxation modulus to the measured data of the MREs. The shear stress and relaxation modulus with long-term predictions estimated from the studied model were in good agreement with the measured data for the MREs at various applied strains and under low magnetic fields. The model-predicted values did not agree well with the experimental data of the MREs under high magnetic fields because of the sample temperature gain caused by heat generation of the electromagnet. Therefore, the investigated model can be used to predict the long-term relaxation stress of the MREs under high magnetic fields of permanent magnets.

  • Název v anglickém jazyce

    Stress Relaxation Behavior of Isotropic And Anisotropic Magnetorheological Elastomers

  • Popis výsledku anglicky

    The paper presents an experimental study and numerical simulation of stress relaxation behavior of isotropic and anisotropic magnetorheological elastomers (MREs) made from silicone rubber filled with micro-sized carbonyl iron powder. Effects of applied constant strains and magnetic fields of an electromagnet on the stress relaxation of the MREs were investigated for 10 h using the single relaxation test with double-lap shear samples. The isotropic MRE showed a linearly elastic behavior, while the anisotropic MRE indicated a highly nonlinear elastic response. The shear stress and relaxation modulus of anisotropic MRE are much higher than those of isotropic MRE. The shear stress of the MREs increased with increasing the constant strain, while their relaxation modulus decreased. The shear stress and relaxation modulus of the MREs within the first 0.25 h boosted with raising the magnetic flux density to about 0.5 T. However, the shear stress and relaxation modulus of the MREs under strong magnetic fields declined considerably after 0.25 h testing. This reduction was attributed to the temperature rise in the MRE samples caused by the heating of the electromagnet. The stress relaxation behavior of the MREs was examined using a four-parameter fractional derivative model. The model parameters were obtained by fitting the relaxation modulus to the measured data of the MREs. The shear stress and relaxation modulus with long-term predictions estimated from the studied model were in good agreement with the measured data for the MREs at various applied strains and under low magnetic fields. The model-predicted values did not agree well with the experimental data of the MREs under high magnetic fields because of the sample temperature gain caused by heat generation of the electromagnet. Therefore, the investigated model can be used to predict the long-term relaxation stress of the MREs under high magnetic fields of permanent magnets.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20303 - Thermodynamics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000843" target="_blank" >EF16_019/0000843: Hybridní materiály pro hierarchické struktury</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Continuum Mechanics and Thermodynamics

  • ISSN

    0935-1175

  • e-ISSN

  • Svazek periodika

  • Číslo periodika v rámci svazku

    APR 8

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    17

  • Strana od-do

  • Kód UT WoS článku

    000779862100001

  • EID výsledku v databázi Scopus

    2-s2.0-85127677171