A novel machine learning framework informed by the fractional calculus dynamic model of hybrid glass/jute woven composite
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F24%3A00012428" target="_blank" >RIV/46747885:24210/24:00012428 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/epdf/10.1002/app.55888" target="_blank" >https://onlinelibrary.wiley.com/doi/epdf/10.1002/app.55888</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/app.55888" target="_blank" >10.1002/app.55888</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A novel machine learning framework informed by the fractional calculus dynamic model of hybrid glass/jute woven composite
Popis výsledku v původním jazyce
This study investigates the influence of glass-jute fiber hybridization on the dynamic viscoelastic performance of woven natural fiber composites. Experiments elucidated the effects of low-frequency vibration and glass/jute ratio on the storage modulus and loss factor. Results exhibited nonlinear escalations in storage modulus and loss factor with increasing frequency and glass fiber content. The loss factor also demonstrated nonlinear rises with frequency and jute content. A fractional calculus-based two-branch model successfully captured these behaviors by incorporating frequency and hybrid ratio as key variables, showing excellent agreement with measurements. To further improve predictive accuracy, an artificial neural network informed by the fractional calculus dynamic model is implemented by enforcing physical constraints during training. The physics-informed artificial neural network achieved higher correlation to experiments than unconstrained models, affirming the value of fusing physics knowledge into data-driven models. This study highlights the promise of physics-guided machine learning for predicting the intricate dynamics of sustainable natural fiber hybrid composites. The integrated analytical and data-driven techniques provide a pathway to comprehensively model the mechanical performance of advanced multiphase materials over diverse conditions.
Název v anglickém jazyce
A novel machine learning framework informed by the fractional calculus dynamic model of hybrid glass/jute woven composite
Popis výsledku anglicky
This study investigates the influence of glass-jute fiber hybridization on the dynamic viscoelastic performance of woven natural fiber composites. Experiments elucidated the effects of low-frequency vibration and glass/jute ratio on the storage modulus and loss factor. Results exhibited nonlinear escalations in storage modulus and loss factor with increasing frequency and glass fiber content. The loss factor also demonstrated nonlinear rises with frequency and jute content. A fractional calculus-based two-branch model successfully captured these behaviors by incorporating frequency and hybrid ratio as key variables, showing excellent agreement with measurements. To further improve predictive accuracy, an artificial neural network informed by the fractional calculus dynamic model is implemented by enforcing physical constraints during training. The physics-informed artificial neural network achieved higher correlation to experiments than unconstrained models, affirming the value of fusing physics knowledge into data-driven models. This study highlights the promise of physics-guided machine learning for predicting the intricate dynamics of sustainable natural fiber hybrid composites. The integrated analytical and data-driven techniques provide a pathway to comprehensively model the mechanical performance of advanced multiphase materials over diverse conditions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_025%2F0007293" target="_blank" >EF16_025/0007293: Modulární platforma pro autonomní podvozky specializovaných elektrovozidel pro dopravu nákladu a zařízení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Applied Polymer Science
ISSN
0021-8995
e-ISSN
—
Svazek periodika
3
Číslo periodika v rámci svazku
2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
1-13
Kód UT WoS článku
001247867400001
EID výsledku v databázi Scopus
2-s2.0-85196210569