Radial Basis Function Neural Network-Based Modeling of the Dynamic Thermo-Mechanical Response and Damping Behavior of Thermoplastic Elastomer Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F75081431%3A_____%2F19%3A00001555" target="_blank" >RIV/75081431:_____/19:00001555 - isvavai.cz</a>
Výsledek na webu
<a href="http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=13&SID=F6xnU9HOLRR1jfSCtjp&page=1&doc=1" target="_blank" >http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=13&SID=F6xnU9HOLRR1jfSCtjp&page=1&doc=1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/polym11061074" target="_blank" >10.3390/polym11061074</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Radial Basis Function Neural Network-Based Modeling of the Dynamic Thermo-Mechanical Response and Damping Behavior of Thermoplastic Elastomer Systems
Popis výsledku v původním jazyce
The presented work deals with the creation of a new radial basis function artificial neural network-based model of dynamic thermo-mechanical response and damping behavior of thermoplastic elastomers in the whole temperature interval of their entire lifetime and a wide frequency range of dynamic mechanical loading. The created model is based on experimental results of dynamic mechanical analysis of the widely used thermoplastic polyurethane, which is one of the typical representatives of thermoplastic elastomers. Verification and testing of the well-trained radial basis function neural network for temperature and frequency dependence of dynamic storage modulus, loss modulus, as well as loss tangent prediction showed excellent correspondence between experimental and modeled data, including all relaxation events observed in the polymeric material under study throughout the monitored temperature and frequency interval. The radial basis function artificial neural network has been confirmed to be an exceptionally high-performance artificial intelligence tool of soft computing for the effective predicting of short-term viscoelastic behavior of thermoplastic elastomer systems based on experimental results of dynamic mechanical analysis.
Název v anglickém jazyce
Radial Basis Function Neural Network-Based Modeling of the Dynamic Thermo-Mechanical Response and Damping Behavior of Thermoplastic Elastomer Systems
Popis výsledku anglicky
The presented work deals with the creation of a new radial basis function artificial neural network-based model of dynamic thermo-mechanical response and damping behavior of thermoplastic elastomers in the whole temperature interval of their entire lifetime and a wide frequency range of dynamic mechanical loading. The created model is based on experimental results of dynamic mechanical analysis of the widely used thermoplastic polyurethane, which is one of the typical representatives of thermoplastic elastomers. Verification and testing of the well-trained radial basis function neural network for temperature and frequency dependence of dynamic storage modulus, loss modulus, as well as loss tangent prediction showed excellent correspondence between experimental and modeled data, including all relaxation events observed in the polymeric material under study throughout the monitored temperature and frequency interval. The radial basis function artificial neural network has been confirmed to be an exceptionally high-performance artificial intelligence tool of soft computing for the effective predicting of short-term viscoelastic behavior of thermoplastic elastomer systems based on experimental results of dynamic mechanical analysis.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Polymer Science
ISSN
2073-4360
e-ISSN
2073-4360
Svazek periodika
11
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
20
Strana od-do
—
Kód UT WoS článku
000473819100146
EID výsledku v databázi Scopus
—