Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Artificial Neural Network with Radial Basis Function in Model Predictive Control of Chemical Reactor

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F09%3A63509302" target="_blank" >RIV/70883521:28110/09:63509302 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Artificial Neural Network with Radial Basis Function in Model Predictive Control of Chemical Reactor

  • Popis výsledku v původním jazyce

    This paper describes the application of artificial neural network with radial basis function as a predictor in model predictive control. Radial basis function neural networks are known for their fast training. Thus, this type of artificial neural networks offers promising way how to reduce computational cost during offline predictor training and eventual online adaptation. The features of this type of artificial neural network are presented in simulations in MATLAB/Simulink on the nonlinear system control. The aim of this paper is to suggest one approach how to solve nonlinear prediction problem using artificial neural network respecting computational demands of the predictor..

  • Název v anglickém jazyce

    Artificial Neural Network with Radial Basis Function in Model Predictive Control of Chemical Reactor

  • Popis výsledku anglicky

    This paper describes the application of artificial neural network with radial basis function as a predictor in model predictive control. Radial basis function neural networks are known for their fast training. Thus, this type of artificial neural networks offers promising way how to reduce computational cost during offline predictor training and eventual online adaptation. The features of this type of artificial neural network are presented in simulations in MATLAB/Simulink on the nonlinear system control. The aim of this paper is to suggest one approach how to solve nonlinear prediction problem using artificial neural network respecting computational demands of the predictor..

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JP - Průmyslové procesy a zpracování

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Quarterly Mechanincs

  • ISSN

    1734-8927

  • e-ISSN

  • Svazek periodika

    28

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    PL - Polská republika

  • Počet stran výsledku

    6

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus